Seeing Beyond Anti-VEGF for Retinal Disease, A Conversation with ViAn Therapeutics

We talked with the founder of ViAn Therapeutics— JP Robles, CEO — in the basement of IndieBio last week after his company had just been voted “Killer of the Week” by his peers in Batch 14. Each week at IndieBio, the companies in our batch compete based on their top accomplishments just in the previous week as they learn to move at venture speed. Top companies are nominated by the IndieBio SF team, but the winner is ultimately chosen by a voting of their peers within the batch.

JP almost chose his guitar over a career in science

JP completed the foundational research for ViAn’s first asset – a cyclic peptide for preventing vision loss in diabetic retinopathy and age-related macular degeneration (AMD) – in a town in Mexico called Querétaro. The region is well known for its vineyards but certainly not on anyone’s biotech map. Before delving into research full time after undergrad, he found himself having to decide between two dreams: music and science.

[JP]: “It’s a bit of a miracle I ended up in science actually. I loved performing with my guitar growing up and strongly considered doing it full time. But ultimately science is an exciting challenge that really captivated me and I knew I couldn’t let it go. I also want to prove to the world that a successful biotech company can arise from this part of the world.”

JP joined the lab of Carmen Clapp, who had first demonstrated that the hormone vasoinhibin could inhibit VEGF during her post doc. Carmen faced tons of pushback from the field on whether this effect was real, but persisted in demonstrating efficacy in vitro. While doing this research, Carmen had worked alongside Nap Ferrara, whose foundational work developing anti-VEGF antibodies led to the blockbuster drugs Avastin and Lucentis for treatment of cancer and AMD, respectively.

[JP]: “When I joined, Carmen wanted me to purify large amounts of this protein so that we could prove the efficacy in mice. But vasoinhibin is so hard to express and purify that I was essentially at a dead end.”

So JP did what any seasoned startup entrepreneur can relate to – he pivoted and found a fresh way to tackle the problem.

[JP]: “I ended up thinking a lot about the structure of this fascinating molecule and learned Molecular Dynamics (MD) simulations. I was able to identify the motif for the core function of the molecule. From there I realized we could likely get the same results from just a short peptide! Ironically I faced a lot of pushback from Carmen early on for this. We both had to show our fair share of persistence in this process.”

Working smarter not harder – JP’s secret to making an amazing therapeutic with less than 5% of the full length protein

JP’s computational work showed that the motif behind vasoinhibin’s therapeutic potential was only a 3 amino acid (aa) sequence out of the whole 125-150 aa molecule. He ended up creating a cyclic molecule out of 7 aa’s that showed remarkable in vitro properties.

[JP]: “We were initially going for an oral anti-VEGF but realized the compound was so permeable we could simplify the delivery even more and make an eye drop! Nap has since come on board as an advisor to the company, which really validates the potential of our technology”

How JP used rabbit eyes to win Killer this week

ViAn’s cyclic peptide eye drop has shown potent efficacy and bioavailability in mice. While those results are promising, testing in rabbits is the industry gold standard for eye treatments, given the physiological similarities between rabbit and human eyes. This week marked the first time JP tested his novel formulation on a rabbit model, setting incredibly high stakes for the future of his company.

JP: “We were able to show sustained bioavailability when testing the therapeutic dose of our peptide. The biggest challenge for commercializing eye drop therapies is typically inability to reach the retina. Here we were able to show that we can get to the back of the eye on our very first try!”

Eye drops for treatment of diabetic retinopathy-related vision loss and AMD could revolutionize patient care for this application. Current standard of care with anti-VEGF biologics entails invasive injections to the back of the eye. The simple administration of an eye drop, coupled with the peptide’s potential for enhanced stability, efficacy, and bioavailability could greatly expand applicable patient populations. 

JP: “Using a peptide eye drop for this application can be a real game-changer for patients in terms of ease of administration, treatment cost, and tolerability. We can get the best qualities of biologics and small molecule drugs with this peptide: unprecedented specificity, safety, and bioavailability as an eye drop formulation.”

Throughout our short conversation it was abundantly clear how JP’s persistence and passion for expanding medical access drives his mission: To revolutionize vision loss treatment for patients around the world through an incredibly stable, efficacious peptide eye drop with superior anti-angiogenic properties for treatment of diabetic retinopathy-related vision loss and AMD vs anti-VEGF.

We can’t wait to continue watching him progress as he puts Querétaro on the biotech map! 

Stay tuned for a deep dive into next week’s Killer!

Drugging the Messed Up DNA Packaging Behind Disease – A Conversation with TippingPoint Biosciences

We talked with the founder of TippingPoint Biosciences — Laura Hsieh, CEO — in the basement of IndieBio last week after her company had just been voted “Killer of the Week” by her peers in Batch 14. Each week at IndieBio, the companies in our batch compete based on their top accomplishments just in the previous week as they learn to move at venture speed. Top companies are nominated by the IndieBio SF team, but the winner is ultimately chosen by a voting of their peers within the batch.

Laura’s been on a mission to transform human health for as long as she could talk, but the ‘tipping point’ to create her startup took some time.

[Sierra]: What was the driving force for you to start a company centered around targeting chromatin? 

[Laura]: “My sister had leukemia when I was young so I spent a lot of time in hospitals by her side while she was getting treatments. Her doctors are like my second family – we still keep in touch. The former Director of Pediatrics at Stanford Hospital is even an advisor for TippingPoint. Ever since that time I’ve been on a mission to create something in medicine with a lasting impact on people’s lives.”

[Mohan]: How did this mission transform into a startup instead of say a career in medicine?

[Laura]: “At first becoming a doctor was the plan but I just fell in love with doing research even as an undergrad. I had an epiphany that the only way to effectively treat diseases was to understand the full range of complexities behind them. I became enthralled with the unraveling of DNA and soon I became an expert in chromatin dysfunction, which really is the driving force behind so many diseases.”

[Sierra]: Wow, so you’re pioneering an entirely new avenue towards thinking about and treating disease.

[Laura]: “Everyone is so focused on gene expression they forget to take a step back and look at the whole picture – messed up heterochromatin is often the true driving force and is what we should be targeting to treat the source of many diseases. Forming a focused startup in this space was this perfect opportunity to apply my years of research in chromatin to make a difference in the field of medicine and I had to take it.”

No sleep, no problem: Laura’s secret to running a Killer startup and raising two kids

[Mohan]: You’re able to be a CEO, run long experiments yourself in the lab while you try to recruit scientists, and still have time to be an awesome mom for your two kids – how do you do it all?

[Laura]: “I learned that I only need a solid 2-3 hours of sleep per night to perform at my best. In a pinch I can get by with no sleep at all and function just fine the next day. This natural gift comes in handy so I can fit in all my mom duties and still have time for a full work day once my kids go to sleep!”

[Sierra]: That’s impressive. It explains a bit about why you’ve been able to accomplish so much during the batch.

[Laura]: “I’m not someone who shies away from hard work; I’ve loved the learning curve of becoming an entrepreneur with a science background. My former research advisor, Geeta Narlikar, is a leading expert in the field of chromatin biology and she has been super active in the company so far. She has years of experience recruiting top talent and finding advisors and has really helped build our team.

[Mohan]: You are exemplary of the kind of scientist-founder CEO we love at IndieBio. But we look for constant evolution. Here you’ve gone from working for Geeta as your advisor during your postdoc to rearranging this key relationship so she is essentially working for you and the company. Tell us how that role transformation is going?

[Laura]: Everything’s been really smooth so far. We’re both direct and open communicators and are able to work together really well. Neither of us has a big ego to satisfy. We just want to translate this science into life changing medicine – no messed up chromatin here in our relationship!

Why she was voted Killer this week

Laura’s first therapeutic target is to develop a treatment for a rare pediatric disease – Diffuse Intrinsic Pontine Glioblastomas (DIPG) – a disease directly driven by aberrant chromatin packaging. DIPG is devastatingly fatal with a 0% survival rate within one year of diagnosis. There are currently no effective treatments for DIPG and companies working towards treatment have been unsuccessful at finding ‘hits’ – molecules which can specifically target DIPG in a pre-clinical setting. 

[Laura]: “Last week we got our proprietary high-throughput screen up and running after months of optimization and tested a library of 10,000 novel compounds – we were able to see several small molecule hits in our first screen! The hits targeted DIPG and did not target normal chromatin. This means they have potential to specifically target DIPG without safety issues, which until now has not been shown by any other company.”

TippingPoint is on track to be much more than a one-hit wonder

Aberrant heterochromatin is proven to play a key role in a wide range of cancers, neurodegenerative disorders, and developmental disorders. In parallel to DIPG, Laura is gearing up to apply her unique platform to other intractable cancers, such as gliomas and pancreatic cancer, with much larger numbers of impacted patients facing bleak survival rates.  Her progress towards developing cures for disease with high unmet medical need has already won her a Golden Ticket from Ono Pharmaceutical Co.

The extra time and effort spent to understand the intricacies of all DNA interactions in a diseased cell in the fullest context possible to date, as opposed to the expression of a single gene, is truly paying off for Laura. Through our brief conversation we could really sense her intense focus, persistence and drive towards achieving TippingPoint’s central mission: Pioneering a completely new approach to target cancers and other disease states by targeting the flawed DNA packaging underlying these disease mechanisms. We can’t wait to see how Laura’s journey has progressed the next time we speak. 

Stay tuned for a deep dive into next week’s Killer!

Breaking Cancer’s Immune Defenses from the Inside Out, a Conversation with Karma Biotechnologies

We talked with three key team members of Los Angeles-based Karma Biotech – Andrew Gray, Co-Founder and CEO, Alan Johnson, Co-Founder and COO, and Joe Turner, CFO and CBO — in the basement of IndieBio last week after their company had just been voted “Killer of the Week” by their peers in Batch 14. Each week at IndieBio, the companies in our batch compete based on their top accomplishments just in the previous week as they learn to move at venture speed. Top companies are nominated by the IndieBio SF team, but the winner is ultimately chosen by a voting of their peers within the batch.

The Karma founders have been friends for over twice as long as the average marriage in the US

Andrew and Alan have had the longest relationship with IndieBio of any co-founders in the batch – dating all the way back to their participation in IndieBio SF Batch 2 as Vali Nanomedical! Their non-professional relationship actually started even earlier – the two met 17 years ago playing rugby and have been close friends ever since. Their experience with Vali taught them that improving the delivery of small molecule drugs wouldn’t cure cancer – but engineering the immune system to eliminate cancer itself might. While the technology to enable this simply didn’t exist at the time, they knew they had the core skills and knowledge to be able to create it. So they did what anyone in need of inspiration might do – headed to their favorite brewery to discuss over a pint.

[Andrew]: “We went to the brewery with a tiny notepad and ended up sketching out the original idea for our core macrophage engineering technology – I still have that notepad to this day. We basically have a fancy version of that same cartoon sketch in our patent that just got issued.”

[Sierra]: That’s amazing how your vision came together so quickly! Was it all smooth sailing from there?

[Alan]: “Not even close, but we were eventually able to scrape together $150K and access to a warehouse in LA with a full tissue culture lab! That foundation and invaluable equipment access enabled us to get to our first funding round.”

[Mohan]: Joe and Mari, how did you guys enter the picture?

[Joe]: “I connected with Andrew when I was working at Blackstone and we just hit it off right away. I started informally advising him on the business aspects but my other job kept me from fully engaging. That’s when I knew that this company had something special and my only option was to dive in.”

[Andrew]: “There’s another critical member of the team – Xazmin, our Associate Director of Molecular Biology. She couldn’t make it today, but if she were here she would chime in to tell you how her and I hit it off over our shared love of Sci-Fi when we met in early 2020. Her favorite tv series, Expanse, is based on my favorite book! I’m sure that’s how I convinced her to leave academia to join the team…

[Alan]: Xazmin plays a crucial role at the interface of the experimental and the business teams. Last week we got some unexpected, disheartening data but she refused to take the result at face value. She worked tirelessly and discovered an error in the analysis that was hiding our positive results!

Karma is one of the few companies lucky enough to go through IndieBio twice

All IndieBio SF batches were in person, with members of every company relocating to San Francisco for six months. Until the Covid-19 outbreak. It forced the IndieBio team to adapt and create a virtual batch model, which has evolved into an ongoing hybrid mode based on team member ability to travel. 

[Andrew]: “A lot has changed since those early days – now that IndieBio runs a hybrid model for the batch it opens up opportunities for companies based all over the world to participate. I now have kids; I wouldn’t have been able to participate in this batch without that change.”

[Alan]: “It was crazy being part of an early batch back when the office was still under construction. We had to pivot our experimental planning constantly. Although that part still stays the same – one of the joys of creating a startup!”

Andrew’s and Alan’s rugby injuries will never heal…but that didn’t stop the Karma team from being a Killer this week

[Joe]: ‘This week was really crucial for us. We actually had three key achievements that set us apart: we were able to make significant experimental progress to meet a major milestone in one of our pharma collaborations; we made progress in obtaining a Key Opinion Leader in the oncology space to advise Karma going forward; and we found a new research tool partner that will enable us obtain key mechanistic data by Demo Day!”

[Mohan]: Yeah, last week was impressive. It’s been amazing to see you guys trying to crush it each week.

[Andrew]: “A few weeks back it felt like we had hit an LA traffic jam and stalled our progress a bit. This week we were able to break through it on multiple fronts and really keep our team and company momentum going. I live my life by the Icelandic motto ‘Þetta reddast – everything will work out in the end,’ and we were really able to demonstrate that this week.”

Through our short conversation, it was extremely clear how resilient the Karma team is in their pursuit towards their central mission: Clearing hard-to-treat tumors by reprogramming the immune system and the tumor microenvironment in vivo with unprecedented efficiency. We can’t wait to see how the team continues to progress towards Demo Day. 

Stay tuned for a deep dive into next week’s Killer!

IndieBio’s Reach Neuro celebrates landmark results in stroke treatment study

Reach Neuro
Reach Neuro
Stroke survivor Heather Rendulic demonstrates her ability to pick up and move a can of soup with the aid of Reach Neuro’s spine stimulation device. Source: UPMC

The Wall Street Journal, along with scores of other outlets including AP News, The New York Times, STAT, and WIRED, recently hailed a pilot study published in Nature Medicine demonstrating a breakthrough in post-stroke treatment to return mobility to the arms and hands of stroke patients. Indie Bio’s Reach Neuro (SF13 2022), which participated in the study, is working to translate the results to clinical use.

The study involved two stroke patients who had spaghetti-thin electrodes surgically implanted into the back of their necks for four weeks. During the experiments, the electrodes delivered a low current in rapid pulses to patients’ spinal cords. The patients were then assigned a series of tasks to test previously-impaired motor skills in their arms and hands. With sensors measuring muscle activity on the patients’ arms, the study reported astonishing results: patients not only experienced significantly improved grasp, reach, and transfer functions during the trials but also demonstrated enhanced mobility weeks after the electrodes were removed. 

“This is actually a procedure done pretty regularly,” Reach Neuro CEO Marc Powell, the lead author on the study, told CBS. “These devices are used to treat chronic pain, and they’re implanted 50,000 times a year in the U.S. So, [it’s] a very safe, well-known piece of hardware.”

“The stimulation is something that is so life-changing for me and so many other people to come after me,” said Heather Rendulic, one of the patients in the study, in the same CBS interview. “It’s enabling me to move and do things that I haven’t done in so many years.”

IndieBio NY Demo Day: Watch 10 pitches from Batch 5

Demo Day 2023

Yesterday, IndieBio presented New York Batch 5 for an online Demo Day, an event that highlights new companies in the IndieBio fold. Unique to this year’s Demo Day was the location of the event: IndieBio’s new 25,000 sq. ft. office, lab, and event space at 7 Penn Plaza in New York City. 

IndieBio’s managing director Stephen Chambers led Demo Day, introducing the 10 companies in New York Batch 5, and SOSV managing general partner Sean O’Sullivan offered closing remarks on the companies’ potential impact on climate change, human health, and beyond. The founders of each company presented on stage about their plans to address existing challenges within the food industry, biomaterials, femtech, industrial biotech, therapeutics, and drug discovery. Learn more about each of the New York Batch 5 companies below—and be sure to check out their Demo Day presentations, too!

BioFluff

BioFluff is developing a biodegradable, cost-competitive, and high-quality alternative to animal and synthetic furs for the luxury clothing market. As the world’s first completely plant-based fur, BioFluff’s product is free from plastic and GMOs and is sourced from organic renewable fiber plants—meaning no pesticides, herbicides, insecticides, petrochemicals or unsustainable raw-oil derivatives in the manufacturing process.  

FluoSphera

FluoSphera is devising the first-ever liquid microphysiological systems (MPS) to revolutionize drug discovery, increase the success rate of clinical trials, and propose superior alternatives to animal experimentation. FluoSphera’s MPS mimics the communication between multiple human organs in vitro to more accurately predict the effects of candidate drugs—even before they reach the first patient—and pinpoint the most promising drugs.

Edge

Edge is solving one of the main roadblocks to the cultivated meat industry: finding a growth factor without extensive downstream processing. To do this, the company has created a novel bioprocess using animal cell factories that self-supply authentic growth factors. Edge’s method doesn’t require the isolation and purification steps of recombinant protein production (common in fermentation and molecular farming), significantly cutting costs while providing a constant supply of growth factors and reducing contamination risk. 

Forte Protein

Forte Protein is building a technology platform to sustainably produce bio-identical animal proteins such as ovalbumin and lactoferrin within plants like lettuce or kale. These proteins can be ingredients for non-GMO, vegan, kosher, and gluten-free supplements, gels, dairy and meat alternatives, and energy drinks. The company can also repurpose their plant waste as feedstock, fertilizer, biofuel, extracts, and other plant compounds to bring in an additional revenue stream. 

Atlantic Fish Co

Atlantic Fish Co is developing cultivated seafood that is both delicious and sustainable. The company harvests cells from fish, feeds nutrients in a bioreactor, and uses scaffolding to yield the texture of a whole fish filet. The resulting seafood is real fish-cell-based cuisine without the environmental and health consequences of conventional fish farming.  

Vader Nanotechnologies

Vader Nanotechnology designs new organisms and enzymes that break down plastic and chemical pollutants. Using automation, image processing and computer vision, and analytical chemistry, the company chooses organisms that can grow on plastics and chemicals that resist natural degradation and optimizes these organisms’ performance. 

Vitarka Therapeutics

Vitarka Therapeutics has developed EndoPore, a drug-delivery solution that uses synthetic biology to create pore forming proteins (PFPs) for targeted, cytosolic delivery of RNA therapeutics. Vitarka Therapeutics is exploiting PFP’s naturally-evolved mechanism of endosomal escape and its mechanism of stabilizing RNA.

Pneuma

Pneuma is creating a living, breathing textile, OXYA, seeded with microalgae that consumes carbon dioxide and produces oxygen. By engineering living materials that can photosynthesize and make oxygen, Pneuma hopes to promote healthier, more sustainable apparel and home-ware industries. 

Bioeutectics

Bioeutectics is making green solvents mainstream with its non-toxic, biodegradable, and sustainable solvents. Using a combination of eutectic technology and green chemistry, Bioeutectics is customizing products for industries spanning food, pharma, and personal care. 

AIMA

AIMA is innovating period pain management with CBD-infused products—the first to be tested being OVY. This vaginal suppository acts as a safe and effective pain management solution for menstruators with dosages based on personalized pain response.

IndieBio’s Halomine and Inso Biosciences win New York state funding for disease outbreak prevention

Halomine received $2M in funding and Inso Biosciences received $955,000. Source: Halomine
Halomine received $2M in funding and Inso Biosciences received $955,000. Source: Halomine
Halomine received $2M in funding and Inso Biosciences received $955,000. Source: Halomine

Two Cornell-based IndieBio startups Halomine (NY 01) and Inso Biosciences (NY 03) won support from the New York State Biodefense Commercialization Fund to develop solutions that will help prevent future disease outbreaks like COVID-19, the Cornell Daily Sun reported in the article “NYS Funds Cornell Startups To Combat New Disease Outbreaks”.

Halomine’s primary technology, HaloFilm, extends the life of chlorine on a surface to offer continuous protection against viruses and bacteria for days and weeks. Halomine, which received $2 million from the fund, intends to use the capital to create another antimicrobial plastics additive coating called HaloAdd to protect plastic surfaces such as medical supplies and food processing tools from pathogens. 

Inso Biosciences streamlines genomics preparation into one automated, in-solution step. The company’s rapid and precise solution can be applied to Illumina, PacBio, and Oxford Nanopore-based sequencing technologies to expand access to all genomics-enabling technologies. Inso Bioscience received $955,000 from the fund to optimize the design and operation of its chip cartridge and fluid control platform. Inso Bioscience’s technology can provide faster identification and response for sexual assault cases by accurately sorting sperm and epithelial cells by size from sample swabs. Inso Bioscience’s technology can also rapidly filter human samples with infectious microbes and remove human cells from microbes to address infectious diseases. 

“If we can limit the time to respond to a new infectious disease and give a better picture of this infection, we can really help address the ability to contain and control it,” said Inso Biosciences CEO Dr. Harvey Tian.

IndieBio’s OncoPrecision closes $3.3M seed round to personalize cancer treatment with “micro avatars”

OncoPrecision provides patient-specific insights that may help oncologists determine the best course of treatment and the biopharmaceutical industry to develop transformational therapeutics. Source: OncoPrecision

IndieBio’s OncoPrecision (IndieBio SF11 2021) recently announced the closing of a $3.3 million seed funding round, “OncoPrecision Raises $3.3M Seed Funding to Improve Cancer Patient Outcomes and Drug Development Efforts with “Patient Micro Avatars”. This most recent funding round bring OncoPrecision’s total funding to date to $4.2M.

The seed round included investors SOSV (IndieBio), GRIDX, New York Ventures, Creative Ventures, and Fundación Para el Progreso de la Medicine, among others.

OncoPrecision creates functional assays for individual cancer patients to help oncologists determine a personalized and effective medication plan. With this most recent funding round, OncoPrecision plans to develop Patient Micro Avatar technology that recreates a patients’ disease ex-vivo to determine the avatar’s response to both standard-of-care and exploratory treatments—all within a week’s time.

“We’re at a pivotal moment in cancer care when shifting away from the historic one-size-fit-all approach towards bespoke treatments that are tailored to each patient is a possibility,” explained OncoPrecisions CEO and co-founder Tarek Zaki. “We founded OncoPrecision to make that a reality.”

IndieBio’s therapeutics company Intrinsic Medicine to list on NASDAQ next year

Intrinsic Medicine is developing a new drug based on a sugar found in human milk to treat Gut-Brain Axis (GBA) and inflammatory diseases. Source: Intrinsic Medicine

In a post entitled, “Intrinsic Medicine and Phoenix Biotech Acquisition Corp. Announce Merger Agreement to Create Public Company Leveraging Human Milk Biology to Treat Gut-Brain Axis Disorders”, IndieBio’s Intrinsic Medicine (SF09 2019), a therapeutics company using the science of human milk to treat inflammatory disorders, announced that it has entered into a definitive business combination agreement with Phoenix Biotech Acquisition Corp. The agreement includes plans to list Intrinsic Medicine’s common stock on the Nasdaq Capital Market under the ticker symbol “INRX ”in 2023.

Intrinsic Medicine is leveraging human milk oligosaccharides (HMOs), an abundant solid component of human milk, to shift the composition of the gut microbiome, boost the microbiome’s production of helpful metabolites, and modulate the immune system. In a therapeutic context, HMO-based drugs have a favorable toxicity and tolerability profile, making them a promising candidate for patients who may otherwise be affected by the side effects and toxicities of other drugs.

According to the press release, Intrinsic Medicine’s merger with Phoenix Biotech Acquisition Corp. enables Intrinsic to advance its lead compound OM002, initiate a Phase 2b clinical study, initiate chronic toxicology studies, and advance the compound OM001 into the clinic.

“This milestone marks an important moment for Intrinsic,” said Intrinsic CEO Alexander Martinez. “With this commitment from PBAX, we will challenge the status quo to deliver a differentiated class of microbiome and immune-modulating medicines with the potential to provide true relief to individuals suffering from GBA disorders.”

Venture’s “Rule of Five” and SyntheX’s $550 million collaboration with with Bristol Myers-Squibb

Synthex

Today we celebrate the company SyntheX, which announced a $550 million research collaboration with Bristol Myers-Squibb to develop better cancer drugs with SyntheX’s drug discovery platforms.

CEO Maria Soloveychik, co-founder of Synthex. Source: SyntheX

It’s an astounding achievement, a great long-term partnership, and very meaningful validation of SyntheX and its founders, Maria Soloveychik and Charly Chahwan. It’s also the culmination of everything we built at IndieBio, and it’s the largest deal of any kind in the history of IndieBio.

SyntheX was incubated at SOSV’s IndieBio in the spring and summer of 2016. We re-invested soon after with what was, at the time, one of our biggest seed follow-on checks ever. We believed something that many people were still quite skeptical of – that brilliant scientists could build a truly great drug discovery company, even if their background was mostly in academia. We believed that scientists could be entrepreneurs. 

CSO Charly Chahwan, co-founder of Synthex. Source: SyntheX

Fast forward to 2020, and the momentum behind this core inspiration was showing some day-after doldrums. It’s a really fundamental question, almost biblical: will greatness be rewarded?  

Since 2016, we kept investing in SyntheX,every raise that was needed. Arvind Gupta was our investor in all the early years, and remains a pivotal board member today. But since 2020, these follow-on investment decisions have fallen to myself and Sean O’Sullivan, Managing General Partner of SOSV. 

In drug development, everybody knows Lipinsky’s “Rule of Five.” It’s a screening test for candidate drugs, or lead compounds. It broadly paints the difference between a pharmacokinetic lead compound and an actual optimized working drug, defining drug-like properties, including their absorption, distribution, metabolism, and excretion. One might also say that the biotech funding environment has their own “Rule of Five.” These questions mirror Lipinski in their own way. Have you done it before? How many patients will it reach? Will the FDA approve? Can you raise?

Every VC asks these questions.  

But you must recognize excellence when you see it. SyntheX’s platform developed the capability to repeatedly produce stunningly elegant compounds. I have fond memories of several long sessions with Sean, Maria, Charly and I. Walking through the biology one step at a time. They’ve been some of the most instructive and inspiring hours of my life. 

It’s important to disambiguate between the pretty simple concept of “backing our founders to the death” and “making up our own mind.” At SOSV, we certainly have the benefit of knowing our founders from inception stage. But we continued to invest in SyntheX because of the excellence of their work. 

We’re honored that SyntheX twice won the Celgene “golden ticket” for best startup. And when Celgene was acquired by BMS in 2019, this translated into a sincere mutual respect with BMS that evolved over time into a great partnership. 

SyntheX and BMS will be working on creating drugs in the class of “molecular glues.” Put simply, a molecular glue binds to a mutated, oncogenic protein and initiates a process for the body to degrade that protein. Conventionally, molecular glues were discovered serendipitously. By contrast, SyntheX’s platform enables molecular glues to be rationally designed.   

Biotherapeutics company Prellis Bio appoints new CEO, raises $35M series C

Biotherapeutics company Prellis Biologics (IndieBio SF05 2017) has appointed Michael Nohaile, PhD as its new CEO, according to a Business Wire press release, “Prellis Biologics Appoints New CEO, Raises $35 Million in Series C Funding to Leverage Human Immune System Biology to De-Risk and Accelerate Therapeutics Drug Discovery and Development”

Prellis Biologics CEO Michael Nohaile, PhD
Prellis Biologics CEO Michael Nohaile, PhD. Source: Business Wire

The company also announced a $35 million in a series C funding round, co-led by Avidity Partners and Celesta Capital. The funding round received support from SOSVKhosla VenturesTrue Ventures, and Lucas Venture Group—bringing Prellis Biologics total funding to date to $64.5 million, Business Wire reports.

Prellis Bio’s industry-leading two-photon holographic technology supports 3D printing of large, complex tissue co-culture systems, such as LNOsTM (Lymph Node Organoids) that recapitulate human immune responses in vitro. The EXIS platform incorporates LNOs for the discovery of fully human antibodies with broad genetic diversity in as little as three to four weeks. In addition, EXIS enables assessment of immunogenicity in response to therapeutic candidates.

“The LNO technology represents a significant breakthrough in access to human immunobiology. Previously, immune cells were expected to respond without the biological context of a functional lymph node,” said Dr. Melanie Matheu, the founder of Prellis. “With 3D printed LNOs, we have the opportunity to accelerate drug discovery and development, while acquiring data on human immune responses all outside of the context of a clinical trial.”

Dr. Nohaile joins from Generate Biomedicines and succeeds Dr. Matheu, who will assume the role of Chief Technology Officer and retain a Board seat. Dr. Nohaile brings deep industry experience and expertise in leveraging innovative technologies for therapeutic discovery and development. Prior to his role as Chief Scientific Officer of Flagship company Generate Biomedicines, he was SVP of Strategy, Commercialization, and Innovation at Amgen, and Global Head of Molecular Diagnostics at Novartis.

“I am honored to join the Prellis Bio team and to partner with Melanie and the entire Prellis team to further build on their inspiring vision for the next generation of medicines,” Dr. Nohaile said in the press release. “This new chapter and investment will enable our team to bring better medicines to patients who desperately need them.”

Watch IndieBio NY’s Spring 2022 Class 04 Demo Day

It was definitely a night to remember! After months of hard work, many came together to celebrate the milestones and accomplishments our Class 04 companies achieved during our Spring 2022 program. The event began with opening remarks from Joan Spivak, Senior Director, Life Sciences for Empire State Development, an organization that we are proud to partner with as we work together to build and strengthen the life science and deep tech ecosystem here in New York and beyond. In addition to hearing about each company’s mission, IBNY’s Program and Partnership Coordinator, Maddy Behr detailed what our unique startup development program offers to each team and ways that industry and professional experts can collaborate with us while Alex Hall-Daniels and Lindsay Atkeson, IBNY’s Business Analysts, discussed upcoming future trends in human and planetary health. After each company shared how they were solving issues across three sectors (Therapeutics, Diagnostics, and Industrial and Agriculture Tech), there was a palpable excitement and energy to help these teams succeed in the room. Below, you can find a detailed list of each company and ways to contact them to learn more.

Interested in applying? We are currently accepting applications for our upcoming IBNY05 Fall 2022 cohort here.

Therapeutics

Diagnostics

Industrial and Agricultural Tech

Stämm Biotech raises $17M in series A for its next-gen, 3D printed bioreactor

TechCrunch” “Stämm Biotech raises $17M for its next-generation, 3D printed bioreactor” reported the series A round was led by Verana Capital and supported by several new and follow-on investors, including SOSV.  According to the article, Buenos Aires-based Stämm Biotech (SOSV IBSF07 2018) uses a 3D printer to create a bioreactor that employs microfluidics. The Stämm device creates a “dense network of microchannels that pass cells through the nutrients and oxygen they need.”

Although still in the early stages of commercialization, the startup says it is “working with one European biopharma company focusing on producing biosimilars” and has five potential new partners in the pipeline, aiming for “pilot scale” in 2022.

Synthace raises $35M Series C, speeding R&D for drugs and therapeutics

Mobi Health News reports “Synthace raises $35M Series C to accelerate the development of cures and expand reach.” The Synthace Life Sciences R&D Cloud automates data, streamlines insight sharing, and enhances experimentation with machine learning. Using the Synthace platform, scientists can speed up the decision-making process and lower the cost of creating new drugs and therapies—from design to production. 

Guy Levy-Yurista, CEO of Synthace said, “To maximize impact, we need to expand access and reach to customers across the globe—at scale. This investment serves as a strong vote of confidence from world-class investors in the biopharmaceutical and innovation technology industries. With their support, we’ll be able to better deploy human and financial capital to help transform scientific dreams into drugs and alternative food sources.”

Michroma takes fungal food colors platform to pilot scale

Food Navigator takes a deep dive into the world of natural food dyes in “Michroma takes fungal food colors platform to pilot scale to produce pH-stable, heat-stable natural red.” Michroma (IBSF09 2019), a startup building a production platform for natural food colors from fungi, has advanced to pilot-scale production of a heat-stable vibrant red colorant it claims can give synthetic dyes a serious run for their money when it comes to performance and sustainability.

BioROSA Technologies is among the startups in the new Autism Impact Fund (AIF)

In “New venture fund aims to become the ‘investment and innovation arm’ of the autism community,” TechCrunch tells the story of the Autism Impact Fund (AIF), which is actively fundraising to concentrate financial resources around the science and technology of Autism Spectrum Disorder (ASD). The article features BioROSA Technologies Inc. (IBSF07 2018), which raised more than $3 million this year and is among the AIF portfolio companies. The Boston-based startup is focused on early detection of ASD, developing a biomarker that aims to identify signs of the condition in children as young as 18 months.

IndieBio helps New York biotech sector evolve quickly

The view from IndieBio’s new home at 7 Penn Plaza.

The public-private nonprofit Partnership for New York City is “dedicated to mobilizing private sector resources and expertise to advance New York City’s standing as a global center of economic opportunity, upward mobility, and innovation.” 

In their recent post “SOSV’s IndieBio — New York’s Latest Launch Pad for Early-Stage Biotech,” the organization describes how “the commercial life sciences sector is entering a golden age in New York City, marked by explosive growth in the industry.” 

As part of that expansion plan, the nonprofit’s Partnership Fund worked with New York state to help SOSV bring IndieBio to New York City in 2019 and launch in 2020. Since then, IndieBio New York has supported 15 startups. The Partnership’s Q&A with the IndieBio team reveals more details about the program’s launch and about its role in developing New York’s burgeoning life sciences industry.

Gwen Cheni’s IndieBio Podcast: Gianna Hoffman-Luca, PhD. Principal at Xontogeny

In this session, Gwen interviews Gianna Hoffman-Luca, Principal from Xontogeny, a therapeutics focused seed-stage VC fund founded by Chris Garabedian, former CEO of Sarepta. Gianna demystifies the funding landscape for therapeutics startups, recommends companies to start solving for data necessary for series A funding, at the seed and pre-seed stage.

Huue founders on Inc. list of most inspiring women of 2021

The business magazine Inc. just named Huue (IndieBio) founders Tammy Hsu and Michelle Zhu to its Female Founders 100. Inc. recognized the two founders for their development of planet-friendly microbe-based dyes that are scalable for denim manufacturing. The editors did a great interview with the Oakland-based duo about the global need for Huue’s technology and why they feel confident in the firm’s ability to scale. Here are a couple of the best moments:

“The fashion industry is aware of its challenges—its troubled supply chain and the toxic nature of the dyeing process. It hasn’t been difficult to get people really excited about the technology and potential.” —Michelle Zhu

“We’ve made a lot of progress to scale up our production with a couple of facilities around the U.S. and to make our microbes more efficient. In August, we were producing 80 times more dye than at the end of last year.” —Tammy Hsu

SOSV HAX alum Opentrons raises $200 million, reaching $1.8 billion valuation

IndieBio’s fellow startup development program, HAX, just recorded a big win, as reported by Bloomberg in “SoftBank Invests in Robotic Company Behind NYC Covid Testing. HAX alum Opentrons Labworks Inc. raised $200 million in round led by Softbank to reach a valuation of $1.8 billion. The Brooklyn-based, laboratory robotics company used its automated systems to decrease Covid-19 testing result times from 14 days to 24 hours and reduced test costs from $2,000 to $28. Opentrons “has grown to support a community of more than 1,000 scientists and 46 countries.” Other participating investors in the funding include Khosla Ventures and ex-Pfizer Inc. CEO Jeff Kindler.

“Biology opens the door to solve many of humanity’s grand challenges. For far too long, scientists and clinicians have been locked-in by slow, expensive, and overly complex lab solutions that underpin their work.” —Brennan-Badal, Chief Executive Officer, Opentrons

SOSV HAX’s Opentrons is center stage in New York City’s rapidly growing life sciences sector

NY1 published a segment “How New York City is expanding its life sciences industry” featuring Opentrons, an SOSV HAX startup. If you’ve ever taken a COVID-19 test in New York City, it’s highly likely your sample was processed by Opentrons, a Brooklyn-based company that builds lab robots for biologists. And this is by design—pegged as a key to New York’s economic recovery, the life sciences industry has received $1 billion investment and support from the NYC Economic Development Corporation (EDC) and Mayor Bill de Blasio to attract new businesses, capital, and jobs. This week Opentrons received a $200M investment led by Softbank, boosting the company’s value to $1.8B.

“Beyond all our traditional industries, beyond the tech community that has grown so successfully in New York City, we need to build up life sciences. This is the future.” —New York City Mayor Bill de Blasio

Allozymes looks to upend chemical manufacturing with rapid enzyme engineering and $5M seed

Part of the complex process that turns raw materials into finished products like detergents, cosmetics and flavors relies on enzymes, which facilitate chemical transformations. But finding the right enzyme for a new or proposed drug or additive is a drawn out and almost random process — which Allozymes aims to change with a remarkable new system that could set a new standard in the industry, and has raised a $5 million seed round to commercialize.

Enzymes are chains of amino acids, the “building blocks of life” among the many things encoded in DNA. These large, complex molecules bind to other substances in a way that facilitates a chemical reaction, say turning sugars in a cell into a more usable form of energy.

BrickBuilt Therapeutics: the First Oral Microbiome Therapeutics

BrickBuilt Therapeutics is the first company targeting the microbiome via live biotherapeutic products to treat oral diseases. They are replacing conventional therapies—surgery or broad spectrum antibiotics—with bacterial strains isolated and formulated specifically to treat oral diseases. BrickBuilt’s first preclinical candidate microbial drug targets periodontitis, or gum disease. This targeted treatment will not only create a more effective way to eliminate gum disease, but also has the possibility of reducing other related severe conditions, such as cardiovascular disease and preterm birth.

Watch BrickBuilt at IndieBio New York Class Two Demo Day

We spoke with BrickBuilt Co-founder & CEO Brian Klein to gain insight into his technology and motivation in building his startup.

Why did you start BrickBuilt?

I have been in the oral microbiome space for almost 15 years, during which I saw several gut microbiome companies launch. Then the microbiome therapeutics industry started to move to the skin. But the mouth is actually the easiest to access, and one of the places in the body with the most disease prevalence. There was no company trying to make therapeutics for oral diseases, and this drove me crazy. 

We need someone to push this forward and no one else was doing it. Importantly, not a current gut or skin focused company can or is going to treat oral diseases; they lack the expertises, microbes, drives and fundings to do so. Additionally, the big players in the probiotics or nutriceutical space don’t have the correct microbes to enter the field either. This is why BrickBuilt is perfectly placed to act: we’re dedicated to oral health and we have the expertise as well as the niche-specific microbes to get the job done.

How did you develop your go-to-market strategy?

Having the microbial library and being able to go on the clinical side as well as partner with people on the consumer side is really important to me. When you look at companies developing microbiome drugs, they frequently mention their enormous libraries and proprietary sequencing data. This is great because microbial libraries and sequencing data are important as you need those things to make drugs. 

However,  if you have a library of 50 different Clostridium scindens, why let 49 sit idle in a freezer because you only picked 1 to go to the clinic with? Why would you not use a different one for potentially an over-the-counter product or developing an enzyme therapy with a partner? That’s why we want to have a useful library and use it both on the clinical side and through partnerships for more consumer and over-the-counter applications, not directly from us but via partners.

We decided to focus first on the clinical route to provide better therapeutics. In the dental space, and for gum disease specifically, a patient could have a surgery, take antibiotics, or both. It’s generally not a good idea for something like gum disease to be treated with a broad spectrum antimicrobial. And surgery alone will not rid the patient of the microbes causing the gum disease in the first place. So, we want to fill that space. 

To do so, we have to go through clinical trials to prove it is safe and efficacious. We have made amazing strides during the IndieBio program toward this. First, we sequenced and closed the genome of our lead microbial candidate, which tells us what the strain is and what it could do. Second, we’ve completed in silico and in vitro antimicrobial resistance profiling. We’ve learned that our lead strain is susceptible to most common antibiotics, an important safety requirement. Lastly, we have begun sourcing healthy donors from around the world and isolating microbes from their saliva to derive other beneficial strains for use in therapeutics. 

What do you think is your key differentiator comparing to others that are in that space?

This is my favorite part because there are no other microbial therapeutics companies focused on the mouth. That’s the first differentiator.

Additionally, even though our team is small, we have a ridiculous amount of experience working with these anaerobic and microaerophilic microbes in the oral niche, an understanding of how you isolate and screen for these microbes, and how to invade microbial communities. People need to realize that “microbiome” as a term is not that old. So, we have been in it from the relative beginning. 

Dr. Esther Miller, our first scientist, has been working on different food-related microbiomes and how to invade those systems. That’s a relatively novel thing: how can I get a good bug into a disease system and track that? 

The understanding of the anaerobic and microaerophilic side of things is extremely important and not very common. If you go to pharma ‘A’ or ‘B’ and say, “Hey! How many anaerobic chambers do you have? Can you create high-throughput libraries and screen them?”—you’re likely to get a blank stare equating to a ‘no.’ It’s a highly trained skill and there just aren’t many people who specialize in it. 

What is the most rewarding thing about your entrepreneurship?

The most rewarding thing has been bringing the initial team together. Esther, who is a highly qualified scientist, came onboard because she believes the work to be both interesting and impactful for the world. 

Our advisor, Dr. Ian Needleman, the former head of British Perio, was driven to join us because of the importance for patients. In fact, he was specifically motivated because we are not just going to try another antibiotic, but instead finding a truly novel solution. 

Being able to move from a concept to potential patient impact, and then pulling people together around the idea, is one of the super rewarding things about entrepreneurship. 

How do you predict that oral health will change in the next 10 years? 

I’m really happy to see phase II and phase III clinical trials from a lot of gut and skin microbiome therapeutics companies coming forward. I think we may see approved treatments for C. difficile infections within the next two years. 

When it comes to oral health and oral medical devices, I think that we are at this amazing time where within 5 to 10 years, I envision dental health being more fully developed and connected to general healthcare. Especially now that we know these oral diseases, like gum disease, have broad reaching systemic effects, like preterm birth, type II diabetes, and Alzheimers. And the same will go for cavities and oral cancer. 

As we are developing our drugs, the dental and medical establishments will start to say, “okay, you can prescribe these things for oral diseases.” And people will acknowledge that the oral diseases will affect the outcome of the rest of the whole body problems. Treating oral diseases is treating half of the world population with acute oral diseases as well as preventing diseases among the world’s entire population. Because when you take all oral diseases combined with diseases like arthritis and diabetes, you end up covering almost everyone on the planet.

Immunology-Based Technologies in Startups: Seven Tips from Founders

The immune system is fine tuned to defend the body from foreign invaders, but when the system malfunctions it can spell disaster for a person’s health and quality of life. The panelists of IndieBio’s Biotechnology x Immunology event are using biotechnology to offer solutions to those suffering from immune dysregulation and overactivity. 

Read the top insights from our panelists below or rewatch the event below. 

Apply to be a part of the next IndieBio cohort

Meet our Panelists:

  • Alex Martinez, CEO of Intrinsic Medicine. Intrinsic Medicine is a biotech therapeutics company that is currently developing a safe, effective treatment for Juvenile Idiopathic Arthritis (JIA) from a bioactive, anti-inflammatory sugar found in human breast milk.
  • Trill Paullin, CEO of Free to Feed. Free to Feed is a startup that empowers mothers of food-allergic infants throughout their breastfeeding journey. The company offers consultation services as it develops a food allergen test strip product that gives mothers an “ingredient deck for the boob” and the confidence to feed themselves and their baby without worry.
  • Cody Shiriff, CEO at Serenity Bioworks. Serenity Bioworks is a biotech therapeutics company that uses insights from cellular stress pathways to develop anti-inflammatory drugs for autoimmune diseases. Currently, the company is moving into clinical trials with a compound that can treat kidney inflammation in Systemic Lupus Erythematosus patients.

The panel followed the journey of each company, revealing these 7 tips for building a startup:

1. Identify the Market Need    

Locate a problem before you start working on a solution.

AM: “I started with the market and a deep understanding of the problem itself. Then we were able to go and find a solution for it. Having that match is actually a very powerful competitive advantage.” 

CS: “There are recently approved drugs that have marginally increased efficacy and clinical response in lupus nephritis. We’re talking about 40 percent effective. We want to increase that and we believe that patients and clinicians are going to want to use a drug that’s more effective than that.”  

TP: “The research indicated that the numbers of mothers experiencing food allergic responses were expanding exponentially year over year, especially through breast milk. So 1, the research indicated that it was a problem that was continuing to expand and to grow; then 2, when I found fellow parents that were going through this as well, their pain point matched and or was worse than mine. That is what led me to believe that this is something that should be addressed, it could be addressed, and it is truly a market that is unmet.”

2. Choose your startup team wisely

Find people who can add unique value to your business.

TP: “Finding a co-founder meant finding somebody who could truly understand the problem, and so I ended up finding another woman who’s breastfed through food allergies.”

CS: “For drug development, we found building the team from San Francisco was a little easier. We were able to recruit people from Amgen or from Genentech who have previously developed drugs…those people are critical for people with a science background, like myself,to collaborate with as the company approaches the clinic.”

3. Prioritize efficient business growth

Success requires a commitment to intelligent planning and focused effort.

AM: “Part of our pattern was to find compounds eligible for 505 (b) (2) regulatory pathways so we could rapidly expedite our FDA interaction.” 

TP: “We’re direct-to-consumer so in the midst of [completing our FDA pre-submission package] we are also building out all of our customer-facing pieces: the website, the social media platforms, and navigating what is truly resonating with parents.” 

4. Choose and recruit patient populations

Balance business pragmatism with patient need.

AM: “I was identifying patient populations where the bleeding edge science really points to immune dysregulation and where there is a stagnant standard of care… My goal was to find patient populations where we could show that our drug produced clinically meaningful results within 12-week endpoints without reliance on surrogate endpoints.” 

AM: “People are asking their deepest problem in Google. You can get in front of every person who is looking for your solution and you can educate them on your clinical studies.”

5. Build strong entrepreneurial networks           

Opening lines of communication opens doors to opportunities…

…with your resources:  

AM: “Developing a great relationship with the tech transfer office is a very useful thing. Build that relationship and then once you’ve internally formulated what your screen is, just have an ongoing dialogue. Our compound was actually served up by the tech transfer office at UC San Diego.”  

…with your peers:

CS: “A lot of the network I was able to form by being in San Francisco for that four months [at IndieBio]. The person who just joined our board was somebody who I met at IndieBio.” 

…with your customer:

TP: “I continue to talk to the customer segment to fully understand the customers’ needs because I personally am no longer breastfeeding a food allergic baby.” 

 6. Remember your ‘why’ 

A successful business is driven by the mind and fueled by the heart.

TP: “There’s nothing quite like living and breathing the problem every single day to feel motivated to continue to work towards a solution for other parents.” 

AM: “I talk about ‘comparably mild’ because this is not a mild disease. I think this is an important note. I’m a patient as well. When you’re a patient, there’s no such thing as a mild disease.” 

CS: “The drugs that are currently being used are extreme. It’s cyclophosphamide, which is a chemotherapeutic. While we’re not going to deviate too much from the use of that, we want to get them off of that drug and into remission as quickly as possible.” 

7. If at first you don’t succeed…

Try, try again.

CS:  “I applied to IndieBio the first time and got rejected. I think it was because I was stuck in all the science speak and wasn’t able to properly communicate the bare essentials of what is important for an investment… I had to learn how to properly communicate and the pitch was better the second time. That’s what led to the first money.”  

TP: “Similar to Cody, I applied more than once and the first time I did not get in. If you are listening and have applied, definitely apply again and continue to iterate and improve.”

Apply to be a part of the next IndieBio cohort

Liberum: Automating Protein Production

When we think of synthetic biology, we often think of synthetic DNA. However, the purpose of the DNA is often to make protein. Today we can order DNA overnight for cheap, but producing protein takes at least two weeks of lab work with various instruments and techniques. Liberum aims to free researchers from the tedious task of turning DNA into protein and make experiments faster and cheaper. I chatted with Liberum’s CEO, Aidan Tinafar.

How important is protein for biological research and production?

When most people hear the word protein, they immediately think of food. Proteins are far more than food. They are used as therapeutics, industrial catalysts, biomedical research tools, materials for manufacturing and additives in consumer goods just to name a few. Insulin is a protein. Chymosin, the enzyme that enables cheesemaking is a protein. Silk is two proteins combined.

Imagine if you could come up with a type of material that you could design with vastly diverse physical and chemical properties for a whole host of applications. Ideally, you would want this material to have three properties. First, you would want to be able to make the material from a small set of inputs that are readily available. Second, you would want to be able to control the properties of the material in a tunable or programmable fashion. And third, you would want the production process to be sustainable and capable of being integrated into pre-existing environmentally-friendly modes of production. Protein is that type of material.

Proteins are strings of building blocks called amino acids that are folded and held together such that they enable certain functions. Combinatorial combinations of 20 amino acids give rise to all the breathtaking diversity we see in nature. The type and order of amino acids are generally encoded within the DNA of an organism. A single cell such as an E. coli bacterium requires a couple thousand different proteins to carry out its biological activity. These proteins can act individually or in concert as networks.

One way to take advantage of proteins is to piggyback on an existing living organism. For example, we can use yeast to make beer without having to deal with its proteins on a granular level. We can also benefit from extracts, secretions or purified proteins from organisms found in nature.

In the 70s, we began gaining a grasp on being able to mix and match these wild-type proteins between organisms through somatic fusions and recombinant technologies. During the same decade, chemical synthesis of a complete gene was demonstrated for the first time. Shortly after, in the 80s, polymerase chain reaction (PCR) was invented allowing us to make billions of identical copies of these chemically derived sequences. Together, these technologies enable us to go from a digital DNA sequence stored on a computer to a designer protein within weeks. At Liberum, we significantly speed up this process, so that we can create better products faster.

These breakthroughs have already brought about the synthetic biology revolution with a total market size worth hundreds of billions of dollars and rapidly growing. For example, the size of the recombinant therapeutics market alone is now over 100 billion dollars. There are two factors that have hidden this revolution in plain sight. Firstly, cultural taboos surrounding genetically modified organisms (GMOs) have incentivized many to categorize these products as natural rather than engineered ones. More importantly, the wide range of applications of these technologies make the market appear highly fragmented. End products include anything from extracts and purified proteins to small molecules, cell lines and other goods and services that use these as intermediates. While apps of the internet revolution came to most through their screens, proteins that lead the synthetic biology revolution touch people’s lives in so many ways that make them hard to categorize as a single class. Massive shifts are often harder to observe.

What are the bottlenecks in creating protein today and how is your technology solving those bottlenecks?

Making protein using biology is hard. For every idea, for every iteration, you have to re-engineer the genetics of living cells, grow them, break them open and purify. This process is very hands-on. You need to keep coming back to it over a week or two. The process also requires expertise and expensive equipment that take up a lot of space. Even if you outsource the work to a contract research organization, you are still bound by similar timelines, plus the duration of shipping. Liberum speeds up and automates the protein manufacturing process in a miniaturized device without having the need to re-engineer any living cells. We do it all in a cell-free system that contains the same powerful enzymatic machinery used by cells.

Now you may wonder, why can we not chemically synthesize these proteins; what is so special about using biology to accomplish protein manufacturing? The problem with chemical synthesis of proteins is really two-fold. First, the error rate for state-of-the-art chemical amino acid incorporation hovers around 1%. This means that for an average bacterial protein of 320 amino acids in length, only about 4% of the final mixture would contain the correct sequence. More importantly, proper folding of amino acid chains into functioning proteins tends to be trickier in chemical systems. A system that more closely resembles biological conditions, such as a cell-free protein expression system, can avoid these problems.

Technical challenges of making proteins aside, there is a deeper conceptual issue at play. We can certainly make a protein of a specific function starting from a working DNA blueprint, but designing that blueprint is far from trivial. While rational and modular protein designs can be highly informative, they are rarely strictly prescriptive. One often needs to screen sizable libraries of designs to optimize for a specific function. Even if we take wild-type sequences from organisms in nature, there is still room for validation and screening of homologues. Unless and until we have computational means that can predictably design for functionality in silico, protein prototyping remains an indispensable tool for protein engineering.

How might your company change the way we produce protein?

We want to enable protein manufacturing at small scale with minimal time and capital investment on the part of our customers. The key insight for our business model is that we have separated the fermentation process from the act of protein production. This allows us to operate as a utility company that delivers protein production capacity to our clients on-demand. Our device and cartridges are merely the last mile. The infrastructure we build to enable this capacity is where much of the value we provide will be generated.

Once our customers have ordered and amplified their template DNA, they can simply place it inside one of our cartridges and produce their desired protein with a push of a button. Having the capacity in their own labs will allow them to optimize the desired conditions. It also provides control and rapid turnaround to enable more bright ideas to see the light of day.

What lessons have you learned transitioning from scientist to entrepreneur during the IndieBio program?

Put the customer first. Science is just the tool we use to serve our customers and the community at large. The value of our company is a function of the value we create for our customers and other stakeholders in the community.

What does the next year look like for Liberum?

Rapid iteration cycles to loop in customer feedback has been in our company’s DNA from the very early days. Our goal over the next year is to build our infrastructure such that we can bring the power of cell-free protein expression to thousands of labs around the world at very affordable prices. We will continue to build upon enhancing user experience through further iterations of the device and cartridges. Our goal is to wrap up alpha and beta testing as soon as possible so that we can launch our product within the next year.

Cybele Microbiome: Skincare Through Precision Prebiotics

Nearly half of society has some sort of skin sensitivity. Cybele Microbiome is the company behind a new direct-to-consumer skincare brand. Cybele’s unique products trigger the natural skin biome to secrete skin restoration compounds. Today I sat down with Cybele’s CEO and Founder, Nicole Scott PhD. Nicole is a geneticist who became fascinated with the interaction of skincare products and the skin biome. Cybele was born when Nicole discovered how to gain precision control of microbes through the use of functionalized prebiotics. She thinks of cosmetic ingredients as first and foremost “food for the microbiome.”

Q. During IndieBio, you ran a small pilot study with your skin serum formulation and got some exciting early results. Tell us about what was seen?

Just two weeks into the study, I got a bunch of excited phone calls, because many of our volunteers were noticing the results right away. We provided the photos to a dermatologist who is highly experienced in reading skin conditions on photos, and he confirmed there’s notable decreases in scaliness, flakiness, hyperpigmentation, papular eczema, eczema, psoriasis, and even a decrease in a precancerous lesion. We knew that one of our long-chain ceramides is a known anti-melanoma compound– but these early results after just 2 weeks have us floored.

Q. Your prebiotic ingredients trigger the skin biome to create only long chain ceramides and no short chain ceramides. Why is that so important?

There are huge differences in the bioactive function of short chain and long chain ceramides. The long chains are the good ones. The short chains actually harm your skin, competing with, and fighting against, the good ceramides. Your typical skin care products that advertise ceramides don’t make this distinction, and can be doing as much bad as good.

Q. As a direct-to-consumer company, how does your hero product evolve over time into additional products and SKUs?

From skin serum we can round out that product line with moisturizers, toners, and eye creams.

But we aren’t a one trick pony. What is also really exciting is that we can get your skin biome to make hyaluronic acid — the most common ingredient in anti-aging cosmetics. These advances come from our platform to identify and formulate new prebiotics for other uses. This allows us to create a suite of related and complementary products. We also will customer’s skin biome assessments and input to help craft the additional products.

Q. How do you manufacture the prebiotic ingredients, and how does this affect Cybele’s margins in the early years of the company?

Our prebiotics are the output of fermentation. At small scale, we can purchase our prebiotics. They are not expensive. As we scale up, we can use any standard contract manufacturing organization to produce them for us — so no capex needs to go into ingredient manufacturing.

Ceramides are normally expensive to add to skincare products — and every bit added to a formulation hurts margins. In our case, not only is our product more effective, but we aren’t paying for ceramides. The skin biome makes them. So we have a much higher margin — estimated at 88% for our serum product.

Q. Tell us about your team.

Our team includes James Lamoureux — a microbiologist that received his PhD with Dr. David Low at UC Santa Barbara — and Hui-Ling Seow, who helped develop and carry out the marketing strategy for a HR platform Epic Quest Games, and Liz De Ruyter, who lead the Amazon On-Campus Store, launching products like PuraVida, Red Bull and Aveeno at UC San Diego. We are currently expanding the team by actively recruiting a Chief Marketing Officer right now.

 

Advanced Microbubbles: Drug delivery across tumor and brain barriers

Getting drugs through the tumor barrier and across the blood-brain barrier is a well-known, major challenge for medicine. Many clinical trials are underway using chemotherapy co-administered with diagnostic microbubbles, energized by ultrasound at the site of the tumor — but these are performing poorly, with inconsistent acoustics, because the bubbles are highly-varied in size.

Today, I sat down with Dr Jameel Feshitan, CEO and Connor Slagle, CTO of Advanced Microbubbles from our current class to learn more about not only the field but also how their product compares to the existing solutions out there. The conversation below is a paraphrased version of our interview.

How did you get into this field of microbubbles?

Jameel: In college, in my final year, I took an elective class on medicinal chemistry which proved to be among my favorite classes. I was fascinated by the design of drugs. The different ways we can engineer poisons into life-saving drugs and how entire drug classes such as, say,statens are found. That started a fire that stayed with me all the way till grad school, at Columbia University. There I had a chance encounter with Dr Mark Borden, he was the first person I met during orientation and he introduced me to the use of microbubbles in medicine. The rest is history.

I learned while there are many applications of bubbles in medical imaging, producing uniform sized bubbles in a reproducible manner was a big problem for the field. You cannot control bubbles of varied sizes. For bubbles to realize their potential for drug delivery they had to be uniform. Uniformity leads to consistency, an essential feature to control the dosage of the drugs our bubbles would enable. My first big project — to make bubbles uniform for their use to deliver drugs — turned into Advanced Microbubbles over time, the only company in the world currently offering uniform size-controlled microbubbles. It was also during my time at Columbia University, that I got to translate this work to that of other labs at Columbia University working on the use of microbubbles to deliver drugs across biological barriers and tumors.

Connor: Similar to Jameel, I had a chance encounter with bubbles. Got introduced to the company via a job-board posting for a chemical engineer to scale microbubble production. Dr Mark Borden, who at that time, was an Assistant Professor at my alma mater at Colorado University Boulder, where I studied Chemical and Environmental engineering, acted as the glue. He provided me with supplemental materials and some of the research on the field; that got me hooked. After going through the research and work done by the company thoroughly, uniform microbubbles emerged as a strangely commonsensical solution. Uniform bubbles and the use of ultrasound to trigger them was such an elegant solution not just for medical imaging but also for drug discovery, where controllable as well as localized response is key.

For you, it might seem commonsensical, but for the readers who are new to the product, injecting bubbles into the body is somewhat terrifying, no?

Jameel: When we talk about injecting bubbles people start thinking about embolisms and clots. It is, in reality, a very well characterized, commonly used and sophisticated engineered product similar to other prevalent delivery methods such as liposomes — which are spherical vesicles with lipid layers — used to deliver a range of drugs into the body. Our proprietary microbubbles are similar to liposomes, engineered on a microscale, except with a gas core. The gas core makes them reactive to ultrasound and they are precisely engineered to last for 30 minutes in the body.

Connor: And to give a bit more context, our bubbles can be easily co-administered with existing clinical protocols for the most part. They are injected systemically, using IV, which is already used in chemotherapy clinics and for most indications they can be triggered in a highly localized manner using conventional ultrasound machines. Our bubbles are designed with the clinic and the patient in mind. It is only for specialized indications of the brain that we look to R&D and partnerships with specialized ultrasound machines.

Now that we understand the concept, how will Advanced Microbubbles impact the space?

Connor: Delivering precise amounts of drugs in a precise space is the holy grail for oncology — really motivates me to work towards this goal. Our lofty goal is to pair our size-isolated microbubbles with promising drugs that can’t get to cancer or are injected at such high doses that cause debilitating side effects to the patient.

One example that comes to mind is glioblastoma, a notorious cancer of the brain that can’t be challenged well today, and a lot of it is due to the blood-brain barrier making it hard to deliver drugs with consistency and safety. With our technology, we have preliminary mice data showing that we can temporarily disrupt the blood-brain barrier. This data is published in a study Advanced Microbubbles did with NIH- NIDA, that showed dramatic improvement in delivery to the brain compared to non-uniform bubbles. And off that study, a dozen partners have interest in using AMB’s bubbles instead of conventional bubbles. Of course, the data is not in-human / clinical data, but offers promise to one day deliver the payload across the barrier and then the barrier heals for normal biological purposes.

Jameel: Couldn’t agree more. I see the potential of Advanced Microbubbles to enable a new standard of care in the field. The standard of care for chemotherapy hasn’t changed in hundreds of years.

With chemo, we have to poison the patient to hope to cure them. Advanced microbubbles can really impact the life of a lot of patients by making chemo less toxic and more efficacious.

Where are you currently in this process?

Jameel: We have been hard at work to get preliminary in-vivo data during IndieBio. Despite the pandemic and limitations of being a pre-seed startup, we were able to work with an excellent partner lab at the University of Texas. Led by company co-founder Dr Shashank Sirisi. Dr Sirsi has been with the company since it’s origins at Columbia University. There he was the key liaison between laboratories for the execution of microbubble development and therapy experiments.

Thanks to his support the team was able to get preliminary results in animal data. In “n of three”, small cohorts of neuroblastoma mice models — a tumor and rare disease that develops in adrenal glands. We are excited to showcase the data this demo day where we demonstrate not only proof of delivery, relative to control, with a commonly used chemo-drug. But more importantly, we show efficacy, a 1mg/Kg effect at significantly lower doses. Sending a strong signal in support of our thesis of low-dose efficacy without chemo-like side effects.

Excited to see this data this demo day. Looking beyond demo day, what does the next phase look like for Advanced Microbubbles?

Jameel: Work in mice models can always go wrong. Demonstrating reproducible and consistent results in-vivo, and in outcompeting non-uniform bubbles is where we are going next. This would mean running larger cohorts. We plan to show the efficacy of the platform in Neuroblastoma and pancreatic cancer animal models by the end of next year.

Looking beyond next year we want to show the versatility of this platform in more than one indication. Extending in-vivo proof of concept in a wide range of chemo toxic drugs expanding the market to other cancers such as breast cancer, prostate, and lung cancer. Showing we can take existing chemo toxic drugs and achieve higher efficacy at hopefully lower doses also plays into our business model to partner with Pharma to enable the efficacy and safety of their old and new drug classes.

With clinical trials coming next, should we be preparing for a long wait to see your product commercialized? Curious to learn more about your regulatory strategy and some learnings in this process?

Connor: At a very high level this data helps us gather more safety data points, setting us on a trajectory to get to IND and therefore, into the clinic in two year’s time. We do realize that there are many indications and potential drugs we can partner with.

Bubbles can go so many places, but at IndieBio, we learned that focus will set you free.

Jameel: Totally. To piggyback off that comment, focus is key. Bubbles have been used in ultrasound imaging, tumor ablation and other medical uses as an approved product for many years. IndieBio emphasized the value of tying key scientific milestones and data to a good go to market strategy. Starting with hard and rare diseases to drug tumors and then opening up to broader markets as we gather more performance and safety data.

Delving into regulatory strategy, early-on, was also a big learning that came out of the program. We didn’t wait instead the regulatory strategy helped us focus on our experiments. We learned how we can leverage the existing safety profile of bubbles and use an accelerated FDA pathway, the 505 (b) 2 to speed up going to market. An eye-opening experience to learn the role of the regulatory process in go-to-market decisions. Furthermore, based on advice from industry experts, we plan on combining this pathway with the orphan drug pathway can cut our time to market to 3 to 4 years.

Connor: When I come to think of it went from the mode of optimizing the best bubble and researching methods to do so in the lab to operationalizing the company to scale and sell the best bubble coming out of that research. In doing so we learned there is a new set of skills one has to code-switch to. Acknowledging this mindset shift is important as there is a stigma of moving too slowly in the lab. It is also exciting as we face a new set of challenges.

Jameel: In all this, I must say, IndieBio network really helped get a sense of the bigger picture and conveying that to a different set of audiences. We are gaining a sense of pitching the company to a rare disease investor versus a platform investor. How to engage different stakeholders and get people excited about what we are doing. We will continue to advance our relationship with regulatory experts and mentors we gained through the program. Look forward to keeping the momentum going around demo day and recruiting post-doc scientists to help speed up our preclinical data package.

IndieBio’s Demo Day is October 27–28, with the New York batch on Tuesday the 27th at 10 am, and the San Francisco batch on October 28th at 10 am. Please follow this link to Eventbrite to RSVP. A single registration will grant you access to both days’ events.

Cayuga: Treating All Forms of Bleeding

Cayuga Biotech is a preclinical therapeutics company whose lead compound, CAY001, shows promise to change the way that severe bleeding episodes are treated. We spoke with CEO Damien Kudela, who explained the science and path forward for Cayuga.

Watch and read an abbreviated version of the conversation below.

How did you transition from academia to biotech entrepreneur?

I had never envisioned an academic route for my career and by the time I was done, I was looking for a new way to apply my scientific knowledge. Cayuga was seeded by a conversation I had in my 4th year of my Ph.D., where someone said that there was a real need for this technology and I should think about creating a company to advance it. Since we’d already been in the early stages of patenting my thesis and the CAY001 drug, I figured ‘I’ve already been a starving grad student; why not go be a starving entrepreneur as well?’

How do platelets work with polyphosphate to promote clotting, and where does CAY001 fit in?

If you think of a clot as a brick-and-mortar material, the platelets form the bricks. There’s a second compound called fibrinogen which is the mortar. That constitutes the physical clot. 

The problem becomes how to get that brick wall to plug the wound. Polyphosphate is produced by platelets and is essentially a catalyst for clot formation, a molecule whose job it is to speed things up. Adding polyphosphate helps the clot to form more quickly, which enables the clot to shut off the bleeding more quickly.

Bleeding causes a lot of negative outcomes for patients, so stopping the bleeding has many benefits. Not only are you saving their lives by reducing blood loss, but you can actually reduce the time it takes for them to heal as well. 

Bleeding causes a lot of negative outcomes for patients, so stopping the bleeding has many benefits. Not only are you saving their lives by reducing blood loss, but you can actually reduce the time it takes for them to heal as well. 

How does CAY001 differ from other pro-clotting drugs available?

Typically, many currently available drugs are recombinant factors that are either direct mimics of endogenous proteins or slight alterations of these same proteins. 

The issue with bleeding and clotting is that they are two sides of a seesaw. Typically, a patient is balanced flat but when they get injured, and start bleeding, the seesaw tips toward the dangerous effects of too much bleeding. Unfortunately, what can happen with recombinant drugs is that the balance remains out of whack; they can tip the seesaw in the other direction and they can have the dangerous effects of what’s called ‘throwing clots.’ 

This is a huge problem. All the drugs that treat bleeding currently have a black box label warning because of that. And doctors have to weigh a crucial decision in treating patients, asking whether the patient is critical enough to warrant the safety risk.

Using polyphosphate as a catalyst differs from these drugs because it has an effect on the rate, but it doesn’t affect the specific clotting factors present. For example, polyphosphate has its biggest effect on the clotting factor, thrombin. The patient doesn’t produce more thrombin. Polyphosphate has a more limited effect, so you can hopefully use it in a safer way.

What data support your hypothesis?

We’ve been looking at different tissues, specifically the lungs. This seems to be where a lot of nano-based drugs fail. Obviously, the liver is also a concern, because it plays such a huge role in clotting. And of course, the blood-brain barrier. 

What we’ve done is compared CAY001 to saline in a pig model. Pigs are hyper-clotters, so there was some evidence of clotting, but it was the same in both the saline and CAY001 drug-treated animals. That was likely the results of the pigs’ natural clotting cascade, but obviously, safety is the number one concern, especially in this field. The first question we’re always asked is, “is it safe?”

“Is it effective” is always the second question. We’re on the pathways and have very promising data that we’ve seen so far to lead us through safety, and the remaining IND-enabling studies as well as our clinical trials.

What will your clinical trials focus on for the first indication?

Until IndieBio, we were fully funded by DARPA and the Army. Obviously, bleeding is a huge problem on the battlefield and causes about 50% of deaths. There’s also a huge problem with bleeding here in the U.S., especially as patients age and may need to be prescribed anti-clotting drugs such as plavix or coumadin. The problem is that these patients are already in the clotting phase; they’re given anti-clotting drugs and they go back to a risk of bleeding. A lot of it is done because there is no treatment for bleeding.

There are other conditions where patients may benefit from a drug like CAY001. We’ve been focusing recently on platelet dysfunction. This could also benefit patients on chemotherapy who end up with thrombocytopenia, as well as patients who have congenital platelet disorders. We’ve identified a hemophilia-like genetic disease that affect platelets, as opposed to Factors 8 or 9. There’s a wide range of people who may benefit.

Obviously, everybody thinks the quantity of life is a major benefit, because bleeding can kill very quickly. Stopping a bleed also importantly enables patients to have a better quality of life, so they don’t have to worry about shaving or having an accident, whether the kitchen will be fatal. You can really help to give patients their life back.

Who is the Cayuga Biotech team?

I was at UC Santa Barbara, and the sole graduate student who really did any animal experiment at UC Santa Barbara was Kyle Ploetze. Kyle actually has a very good story of the first time we med; I’ll let him tell it another time. I ended up working with Kyle to test our new drug, and we hit it off while doing the test. The data worked well, and we got along well. Kyle and I jokingly refer to CAY001 as kind of our baby.

We were the two initial co-founders; in 2019, we needed to add a third person to do a lot of our quality controls. We were working on our manufacturing, and Nate, a postdoc at UC Santa Barbara, interviewed and we thought he was excellent, so brought him on board. It’s been excellent working together.

What are the next major milestones for Cayuga on the road ahead?

We had our first meeting with the FDA in May 2020, so we’ve gotten feedback. What we really need to do is finish our PK/PD and tox studies. These will help to figure how the drug is cleared and its toxicity; are there any adverse effects from the drug, what doses are safe, what doses are effective. Really, we need to determine it’s safe enough to move to human trials. We’re excited to present our data at Demo Day.

Learn more about Cayuga Biotech and all of IndieBio New York Class 1 companies at Demo Day.

Biomage: Making Single-Cell Sequencing Data Accessible to Research Biologists

Biomage is a computational biology company with a unique software that allows scientists to explore the multiverse of human cells through single-cell sequencing. We spoke with CEO Adam Kurkiewicz about the ability to turn every biologist into a bioinformatician.

Watch and read an abbreviated version of the conversation below.

How is single-cell transcriptomics changing biomedicine?

Single-cell transcriptomics, or single-cell sequencing, is a relatively recently discovered method, and is used to really understand what’s happening inside living organisms at the level of individual cells. This is something I like to compare to the invention of the light microscope when scientists were for the first time able to look at individual cells. Single-cell sequencing gives us the ability to look at individual cells, from the inside. It’s a unique capability that has only emerged in the past couple of years.

This technology is not specific to just one type of biomedical researcher, but is used throughout many fields of biology, including prominently cancer research, cardiovascular research, and developmental biology.

What problem in bioinformatics is Biomage solving for researchers?

One of the biggest challenges in applying single-cell transcriptomics is that it will be difficult to scale the technology to every biologist who wants to use it. At Biomage, we make it possible for every biologist to analyze a single-cell dataset without having to develop the really, really elite expertise that has been required so far to carry out such analysis. 

We do this by effectively removing a step: the process where the files created from analysis of a sample of tissue are normally first worked on by a research bioinformatician. We remove that step entirely by automating the research bioinformatician and making it possible for biologists to become the bioinformatician themselves. This benefits not just the cost efficiency, but it’s also quicker: quicker to iterate, quicker to test the hypothesis directly. It also removes the potential issues with miscommunication and knowledge transfer between 2 different fields, biology and bioinformatics. 

What are the benefits of empowering biologists to analyze single-cell transcriptomics?

We are significantly cutting down the amount of time required to carry out such analysis. Typical single-cell analysis using a bioinformatician working part-time takes between 3-6 months to deliver the level of insight that is required for a publication in a high-profile journal. Our aim as a company is to bring that process down to a week or two of hand-on analysis by the biologist directly with the software. 

The bulk of the cost savings is specifically eliminating reliance on a consulting service or partnership with a qualified bioinformatician. There is some additional cost reduction in how we handle the data and how we can process the data by a close integration with the core facilities where the sequencing actually happens to make it more cost effective to process the data and carry out the computational aspects of the analysis as well.

Scientists need excellent software. It’s often treated as an afterthought or something that is only a small part of research grants.

Who will your initial customers be, and will this change as you iterate the product?

We’ll work first with core facilities. Those at core facilities are happy to partner with us because working together, we can actually deliver the biggest value to their customers: the researchers. We can free the core facilities staff for work on the truly creative and difficult aspects of the field. In a core facility, there are typically bioinformaticians who are taking care of as many as 50 projects; they really need the ability to cope with the analytical needs of that many projects efficiently. By bringing the time down to 1-2 weeks, we make it possible for bioinformaticians to effectively do their job, so they’re very happy to partner with us. 

On both sides of the Atlantic, both in the U.K. and in the U.S., the core facilities have been overwhelmingly positive and we expect these partnerships to further expand into other core facilities and to grow stronger by closely integrating together.

The bulk of the users and the real impact of the software that we’re building is going to most likely come from other sectors, including pharmaceutical research and biotechs. Our plan is to initially target the academic customers as a way to validate our technology and get an initial beachhead and enter into this space. For the next stage, we’re going to target biotech and pharmaceutical companies—they’re the next customer.

What provided you with unique insight into this problem?

My journey started on the other side of programming, computer programming and mathematics. I worked a short time in Skyscanner, a software company where I understood what social engineering is like and understood how software can be used to solve real-life issues and help people to accomplish major tasks.

The biological side came a bit later. To have a really impactful professional life, I wanted to come at it closer to human health and so I enrolled in a Ph.D. program at the University of Glasgow, where I ended up doing bioinformatics. I managed to find a way to merge my scientific interests with my software engineering interests! While a Ph.D. student, I realized that there was a really big need for bioinformaticians among biologists I worked with, so I started offering such analysis as a consulting service. 

With my co-founders Marcel and Iva, we quickly realized that it would be impossible for us to cope with the demands. The most impactful way to allocate our efforts would actually be to build a software solution to solve the difficult problem of the alignment biologists to understand single-cell data. 

Scientists need excellent software. It’s often treated as an afterthought or something that is only a small part of research grants. Through conversations with senior colleagues and in academia, I realized the best way to realize the mission of building really great software that can help was by creating a company.

What does the future hold in store for Biomage?

We would like everybody to be able to use Biomage as their solution of choice for single-cell data analytics and expand into other technologies such as spatial transcriptomics. We hope to dominate the landscape for single-cell data analytics.

Learn more about Biomage and all of IndieBio New York Class 1 companies at Demo Day.

Brightcure: Reviving, Restoring, and Replenishing a Woman’s Intimate Microbiome.

Brightcure is a company dedicated to improving women’s health. We asked Brightcure CEO Chiara Heide questions about the first product, a bioactive cream that promotes a healthy microbiome in a woman’s urogenital tract. 

Watch and read an abbreviated version of the conversation below.

Your personal story lends a lot of motivation. Will you please share it?

I personally suffered from chronic urinary tract infections, caused by harmful bacteria that enter the bladder and cause an infection. However, I’m not alone; every second woman worldwide suffers from these infections, and many are my friends and family.

I was super frustrated with the treatment situation because urinary tract infections are basically treated by antibiotics. There aren’t validated alternatives available and antibiotic resistance is now much more common. What that means is that many women experience a vicious cycle, to constantly contract infections and subsequently constantly take antibiotics. 

This is not a sustainable solution; it’s bad for the immune system and the natural microbiota. Antibiotics destroy the microbiome of your vaginal flora, and create many side effects, including making it more likely to get another infection because you don’t have the good bacteria in your intimate area anymore. Because of my frustration with this situation, I used my scientific background to look into new solutions. 

Tell us about Brightcure’s unique solution.

It’s very exciting: we basically found a good bacterium and we can use a good actor to fight the bad bacteria. Our bacterium is one that naturally exists on some healthy individuals and animals and can also be found in nature. There is nothing externally introduced.

This bacterium specifically fights the bad bacteria, but it does not affect the good bacteria of the urogenital tract, so it’s perfect for the intimate care area, because it balances your vaginal flora.

By fighting these bad bacteria, it gives the good bacteria room to colonize the vaginal area. This is what balances and promotes the good bacteria in the intimate area.

Is there risk of resistance developing to this solution?

There have been decades of research conducted with this bacteria and there is no associated risk with it. There has been extensive animal research around it and also testing in different human cells, and it has been in no way negative at all. 

This good bacterial strain basically eats the bad bacteria that cause these recurrent urinary tract infections. These normally travel from the rectum to infect the vaginal area. Our strain sees and kills bad bacteria, but it does not affect the good bacteria, those like Lactobacillus that promote vaginal flora. It is very targeted. 

How will women have access to Brightcure’s cream?

We are using this bacterium in our cream. It will be an intimate cream sold as a cosmetic cream that women apply externally to their intimate area; our bacterium is in that cream.

The cream will be sold as a cosmetic, making it a consumer product that women can easily access. We have a newsletter on our website to get the latest updates on our product development and our product itself. We also have a list where you can sign up for pre-launch notification if you are really keen on the product. We’ll have the product ready next year (2021).

We aim to destigmatize the conversation around intimate health. The community aspect is really important for me, because there’s not enough awareness around UTIs and the stress levels around chronic infection. It has a huge impact on women’s life.

To make the claim specifically around preventing UTIs, we will be partnering with clinicians and healthcare providers for rigorous clinical studies. These will allow us to make more specific claims about efficacy in the future.

How does this cream promote a healthy intimate microbiome? 

By fighting these bad bacteria, it gives the good bacteria room to colonize the vaginal area. This is what balances and promotes the good bacteria in the intimate area.

How will Brightcure change women’s intimate health in the future?

I hope to create a huge supportive Brightcure community, who uses our products. I hope we can reduce their suffering and bring back happiness to their everyday life with less stress. I hope we raise awareness for UTI and UTI patients because it has a major impact on a woman’s life, as well as how important the vaginal flora is to boost one’s immune system.

Learn more about Brightcure and all of IndieBio New York Class 1 companies at Demo Day.

The Future of Drug Manufacturing: Just What The Doctor Ordered

on demand drugs being dispensed

What factors drive innovation and supply chain disruption in the manufacture of medicines? What technologies will be critical over the next decade to increase access to vital medication and to manufacture them sustainably?

We asked these questions to 3 entrepreneur thought leaders in our latest ‘Future of The Planet’ event. Below the video are our key takeaways from the discussion.

Drugs Will Be Made on an Assembly Line

pill assembly line

Believe it or not, most drugs are still produced in batches, like cooking a recipe in a kitchen. The industry is slowly transitioning toward “continuous flow processes,” which are automated assembly lines in which each pharmaceutical “ingredient” is added at different phases of production. 

Continuous flow processes offer several advantages over batch processes, including flexibility and cost. In the simplest terms, this means that once enough of one drug has been produced, one could sterilize the system, alter the raw inputs, and select new pre-programmed settings; voila, an entirely different drug would be synthesized. The drugs would also only be produced when needed, meaning that continuous flow processing allows a manufacturer to delegate resources more efficiently, increase productivity, and adapt to the needs of customers more effectively than by using batch processing.

Each drug batch undergoes heavy scrutiny for quality control to ensure uniformity and safety, but this quality check currently occurs at the end of drug production. Digital analyses of continuous flow processes scrutinize vast volumes of data, and they do so in real-time. This monitoring allows detection and correction for the faintest perturbations during the process, eliminating the need for sample testing, and saving the costs incurred when discarding millions of units of a bad batch. 

The Takeaway: The pharmaceutical industry, much like the automotive industry or the semiconductor industry, will soon master the art of manufacturing millions of individual units at reproducible, high-quality levels.

Drugs Will Be Available on Demand

on demand drugs being dispensed

Imagine a portable handheld drug manufacturing device that uses simple raw materials to produce drugs quickly and efficiently: this seemingly far-fetched technology has been under development at the Defense Advanced Research Projects Agency (DARPA) for quite some time, as explained by Dr. Geoffrey Ling, Founding Director of the Biological Technologies Office of DARPA.

Why shouldn’t on-demand drug synthesis be possible? Ling told the panel that recognized the need for such innovation during his time as a field medic in Afghanistan. There, he often faced limited availability for generic drugs, noting, “if I had a chemistry set, I could have made [these drugs] on my own. I only need some organic compounds made of carbon, hydrogen, oxygen, and a little bit of nitrogen. If I had a pencil, a glass of water, and an egg, I could make bromocriptine. The problem is bounded, and automated chemistry will solve it.”

Inspired by his experience in Afghanistan, Ling joined DARPA, and in 2012 he set out to find and fund researchers who could make his vision of a portable pharmacy a reality. The machines as they currently exist are the size of a refrigerator, but Ling believes soon they could be the size of a briefcase. These machines cycle small amounts of chemicals through a series of tiny chambers that can produce thousands of doses of multiple drugs in a matter of hours. Ling sees these systems as crucial for physicians working in some of the world’s most challenging environments and likens them to 3D printers that could one day assemble drugs such as antibiotics, antibodies to treat autoimmune conditions or insulin for diabetes.

For this on-demand vision to come to fruition, the drug regulatory bureaucracy needs an overhaul, and the cost of such devices needs to come down many orders of magnitude before they can be made widely available. 

Synthetic biology presents another paradigm shift in the pharmaceutical industry. As Aiden Tinofer, CEO of Liberum noted, “the cost of drug discovery has roughly doubled every nine years since the 1980s, and we’ve also realized that a one-size-fits-all approach is not very effective in treating disease. But a growing group of people believes synthetic biology can get us through these problems.”

Technological advances from the synbio field could provide an essential solution for on-demand production, specific to biologics: cell-free protein printing. Genetic material, already cheap to synthesize, can be directly added to enzymatic systems, generating a molecular assembly line producing peptides or antibodies of choice. Using this system, engineered by Liberum, proteins are manufactured in hours at low cost and high fidelity. 

The Takeaway: Increased engineering sophistication both mechanically and biologically will lower the barriers to drug production and offer new ways of making old drugs on-demand for resource-limited users.

Drug Supply and Distribution Will Change

While highly centralized large drug manufacturing plants enable substantial cost efficiencies and scale, COVID-19 has exposed the downsides of a dominant centralized system. A prime example lies in the distribution of the highly anticipated COVID-19 vaccines: distributing vaccines among half the world’s population will require 8000 cargo planes. Emirates, which has one of the largest fleets worldwide, has just 70. The worldwide infrastructure to distribute such a life-saving vaccine is significantly lacking. 

Production of said vaccine relies on a global network of supplies, as well. Global dependency, combined with precarious political relationships, has led various countries to draft legislation requiring many domestic companies to have some local manufacturing footprint. Global supply chains are being rewired as we speak. 

Distribution channels are evolving too. As more services digitize, and customers’ appetite for bespoke products on-demand increases, drug manufacturers are eyeing the tantalizing profits of selling direct to consumers. Technological advances in manufacturing and logistics could enable this shift. The sentiment for autonomous, self-sufficient, localized systems is high and will present real challenges to globalization. 

The Takeaway: A hybrid of drug manufacturing and distribution systems is likely to evolve, whereby different approaches are applied to suit the needs of specific industries, markets, and situations.

How Will Drug Manufacturing Change in the Next Decade?

Supply chains of the future

The only certainty may be that the future holds many changes in drug manufacturing. For one, we should see the establishment of more utility companies in the space of synthetic biologies, such as Ginkgo and Twist Bioscience, that take on the hard work of manufacturing proteins and DNA. This division of labor will save time and resources for the smaller downstream players who can design novel applications, find new opportunities, and ultimately increase human health. 

As the picks and shovels of this industry emerge, drug discovery will skyrocket, the much-promised technologies of cellular and genetic therapies will come into their own, personalized medicine will finally arrive at the push of a button, and new vaccines will be developed much faster in the face of pandemics. And that’s just the beginning. 

Thanks to our panelists:

Geoffrey Ling, Founding Director of the Biological Technologies Office of DARPA, and CEO of On Demand Pharmaceuticals. 

Aidan Tinafar, CEO at Liberum Biotech, a company currently in the IndieBio accelerator program, with a benchtop protein synthesizer. 

Sauri Gudlavalleti, Global Head of R&D at Dr. Reddy’s Laboratories, which develops and manufactures generic medicines that are sold across 17 countries.

IndieBio Coronavirus Initiative

We are seeking up to 8 startups to receive a minimum of $250,000 each to pursue the development of diagnostics, therapeutics, vaccines, disinfection, and other solutions addressing the worldwide problem of emerging infectious diseases.

We have an unprecedented opportunity to contribute to solving the remarkable scale of challenges that Covid-19 presents to our planet. Scientists need funding and they need it immediately in order to work at the pace that the coronavirus is moving. The time to accelerate and mobilize all scientific discovery has arrived. We are excited to work together in finding solutions. 

“There’s a long war ahead and our Covid-19 response must adapt” ~Dr. Tom Frieden, Former CDC Director

IndieBio’s current portfolio of companies, backed by SOSV,  has been built with the anticipation of a future that requires massive systemic change impacting every area of human and planetary health.  We have already made investments in companies like CASPR Biotech, who is working on molecular diagnostics for Covid-19. To read about more of IndieBio’s companies working on Covid-19, scroll down to the bottom of the page. To learn about all of SOSV’s Covid-19 startups visit www.sosv.com/covid-startups.

Members of Caspr Biotech headed to the frontlines.

IndieBio seeks to work with companies that can detect, treat, and prevent COVID-19:

Companies who focus on detection may include those that: 

  • Improve diagnostic capabilities in speed, cost, or scaling.
  • Predict negative post-infection sequelae for COVID-19 patients.
  • Enhance serological testing kits.

Companies who focus on treatment may include those that:

  • Mitigate patient inflammatory reactions (cytokine storms).
  • Regenerate lung function or address other long-term health consequences.
  • Formulate therapeutics for tough-to-penetrate organs like the liver and nervous system.

Companies who focus on prevention may include those that:

  • Develop novel vaccine platforms or formulations.
  • Sterilize contaminated buildings, waters, or foods.
  • Block disease transmission from animal reservoirs or vectors.

Apply your scientific expertise to eliminate the serious challenge of COVID-19:

  • Application is on a rolling admissions basis 
  • Apply at Indiebio.co/apply

About IndieBio: IndieBio enables scientists to become entrepreneurs and build breakthrough companies to solve the world’s biggest challenges through biology as a technology.  IndieBio drives innovation to improve human and planetary health. To date, 116 biotech companies have been through the program, creating a combined valuation of over $2.4 billion. IndieBio is a division of SOSV.

Over a dozen IndieBio startups are already on the front lines of the COVID-19 response. A sample of these includes: 

  • Renegade Bio: Improved Diagnostics. Renegade Bio is testing SF Bay Area’s first responders with a “we come to you” service. Renegade invented an improvement on the CDC testing method, turning four reactions into a single-step reaction and eliminating the RNA extraction requirement. The result is a testing process that is 70% cheaper, taking half the time, for a net 4x increase in throughput. They partnered with Bay Area Phlebotomy & Laboratory Services to open testing for the public with an on-demand, Uber-like service. They are starting testing of all SF Bay Area first responders and police forces, running 1300 tests every three days. https://sosv.com/portfolio/renegadex/
  • Prellis Biologics: Faster Antibodies. Prellis Biologics is 32 days from anti-SARS-CoV-2 human antibodies using bioprinted, human mini lymph nodes. In 2017, Prellis Biologics printed human mini lymph nodes, which they injected with Zika virus. The mini lymph nodes produced human antibodies for passive immunity against Zika. Now, Prellis is doing the same for the coronavirus. In one week, they will be growing immune cells, in two weeks growing lymph nodes, and in a month screening the antibodies. In six weeks the antibodies will be sequenced for scale-up and trials, which could begin in as soon as 10 weeks. This is a much faster turnaround time for antibodies and even if other approaches yield antibodies first, Prellis’ approach is a more rapid way to generate antibodies as the virus mutates.
  • Amaryllis Nucleics: Sequencing for Diagnostics and Epidemiology. Amaryllis Nucleics is developing a universal viral RNA detection kit to detect COVID, Influenza, and other viral infections in the same test, while detecting and tracking mutations as they arise. Using established next-gen sequencing technology and optimizing their RNA sequencing kits for COVID, they can enable thousands of samples to be run per machine each day.
  • Diadem Biotherapeutics: Lung Immune Modulators. Diadem is engineering exosomes to be inhalable cell-specific immune modulators. Exosomes are small, virus-sized particles released by cells to communicate throughout the body. Diadem plans to develop a SARS-CoV-2 vaccine by engineering exosomes with surface bound SARS-CoV-2 proteins and immune-stimulating ligands, effectively turning them into non-replicative virus-like particles (VLP). To increase immune response and memory for the SARS-CoV-2 antigen, the VLPs can be engineered with immune stimulating ligands (e.g. 4-1BB). 
  • mFluidX: Diagnostic Accessibility. mFluiDx is developing a low-cost microfluidic diagnostic to detect COVID-19 in under 15 minutes in decentralized settings. Their chip is as simple and cheap as paper tests, yet has DNA/RNA level sensitivity able to diagnose onsite. 

Learn more details about all IndieBio and other SOSV-backed startups here.

Header image credit: Fusion Medical Animation on Unsplash

Beeline Therapeutics: Supercharging T-regs

Dimitre Simeonov, Michael Wyman, and Chris Chavez of Beeline Therapeutics

Beeline takes engineered immune cell therapy in a new direction. They are unique in how they have engineered regulatory T cells (Tregs), which play a natural role in ramping down the immune system. This has wide applications for autoimmune diseases and organ transplantation.

We talked with company founders Dimitre Simeonov and Michael Wyman.

Since you’ve announced that you’ve successfully engineered Tregs, you’ve had a good number of pharma companies wanting to partner with you. How did you accomplish something they couldn’t do on their own?

A number of companies have learned how to edit the genome of effector T cells, such as killer T cells. The idea of doing similar genetic engineering of Tregs was beginning to be considered. But actually doing it was another story.

To start with, Tregs are just hard to cultivate and proliferate. Then, there were a lot of hurdles to overcome in terms of the genetic engineering. We weren’t just engineering a receptor into the Tregs to localize them to the spot of inflammation. We wanted to go beyond that — to enhance the natural immunosuppressive power of Tregs. This meant delivering a very large genetic payload to a precise spot, without interrupting the normal function of the gene we were targeting. We found unique ways to pull this off.

How do they work, and what’s the benefit of a “living drug”?

Tregs naturally quiet the immune system. They do this through a unique cellular programming that relies on transcription factors, cell surface receptors, and cytokines that help a Treg shutdown other immune cells. Sometimes this process fails as Tregs can be overwhelmed by the immune response. So we supercharge them and put them back into a patient’s bloodstream, so they can migrate to inflammation hotspots, where they can secrete therapeutic proteins to calm an immune response.

As a “living drug”, Tregs have unique advantages over standard molecular therapies. First, we can harness the cell’s ability to produce protein to continuously manufacture therapeutic proteins in the body. And not just anywhere — but precisely at the site that needs the therapy. No more biweekly injections — just a single shot of your own cells. Second, cells can “sense” their environment and respond accordingly by changing gene expression. By engineering our therapies into the “responder genes” our cells will make therapeutic proteins in response to the environment that those cells are in. For example, say we are trying to quell inflammation as in the case of Crohn’s disease — we might engineer our therapeutic so that its expression is increased in an inflammatory environment thereby allowing us to precisely control dose and ensure we are delivering the highest doses to the areas of the body that need them. Finally, cells are complex machines armed with a number of “tools” that allow them to accomplish their functions. This is fundamentally different from the medicines that have so far dominated the clinic — generally drugging a single target or pathway.

Our technique solves a problem that every drug company is challenged with. How to get the drug exactly where you need it, and maintain a dose potency that is appropriate to the severity of the disease.

It’s like having a drug factory in your body.

Yes, though we’re technically not secreting synthetic drugs. We can do that (as long as they are protein-based), but at this point, our cells secrete the natural signalling compounds the body already makes and uses on its own. We’re the first therapeutics company to publicly announce that we’ve made the proteins we’re making from Tregs; it’s very exciting.

Why did you use DNA-cutting enzymes instead of the more conventional viral vectors?

We actually are doing both approaches. With the viral approach, we do get a high expression rate, but it comes at a tradeoff. The virus lands randomly on a cell’s DNA. You can’t control where the virus integrates the payload. And when it integrates, it can disrupt gene function, which might be a pretty important gene. Also, every gene has a different expression level. So in one cell, you might randomly hit an area of the DNA that is highly acvtive, and in another cell, you could hit an inactive area. You end up with different levels of the therapeutic in each cell — or worse some of the cells may not express the therapeutic because the surrounding inactive DNA could spread to your therapeutic.

To get a much more controlled result, we are also using non-viral engineering approaches. This overcomes many of challenges we mentioned earlier and allows us to think about how to use a cell’s natural gene regulation to regulate our therapy.

In what critical indications is your cell therapy most needed?

Helping the transplantation of organs is where physicians are the most excited by what we’ve done. Today, to prevent rejection of a donated kidney, physicians have to give patients a lot of broad systemic immunosuppressants. These patients are already in a weakened state, and having no immune activity is dangerous. Also the drugs make the patient very vulnerable to cancer; one of the most common drugs is classified as a Group 1 carcinogen. There are a lot of patients who don’t even get put on the waiting list for a kidney, because they are too high risk.

By localizing the immune suppression, and helping patients’ immune system not reject a donor organ, we can open the door to new types of transplants that aren’t very feasible yet. One of those is pancreatic islet cells; they produce hormones. People with Type I diabetes could be alleviated with islet transplantation.

One of the exciting potentials of this therapy is long term tolerance — meaning patients could potentially come off of immunosuppressants all together. This is something we are actively working towards.

What’s the next year look like for Beeline Therapeutics?

We have the ability to engineer receptors to help the Tregs home to the right places in the body — over the next year we’re going to expand that platform with more receptors. A kidney donor has to match the patient’s HLA markers. We’ll use the patient’s HLA markers to design receptors to recruit Tregs into the donor tissue.

Also, proving our method works in mice presents an interesting challenge, because we engineer human T-regs, but a mouse’s immune system would attack human cells. The elegant way to solve this is to use a mouse model without any immune system, repopulate it with a human immune system, and then transplant the mouse with human tissue, to see if we can prevent rejection.

Watch CASPR Biotech pitch on IndieBio Demo Day, Tuesday June 25th in San Francisco or via LiveStream. Register here!

Gavilán Biodesign: Overcoming Drug Resistance

Gavilán Biodesign emerged out of the Donald Lab at Duke University, one of the world leaders in computational drug design. During their time at Duke, they redesigned many compounds, including a new Anti-HIV antibody that is now in 9 clinical trials. Their software was also used to predict tumor resistance mutations to 17 leading precision cancer therapeutics and multiple antibiotics. Their work led to 45 papers published in leading journals.

We chatted with three of the company’s founders, Marcel Frenkel, Mark Hallen, and Jonathan Jou.

What has been the limitation of computational drug design?

Using computers to design better drugs has been quite effective when there’s already a lot of knowledge about the compounds and the protein targets they’re hitting. When there’s a lot of data to train on, artificial intelligence can learn and interpolate alternatives, then estimate how well each one works to find a better one.

But those approaches to in silico drug design haven’t worked well for new areas, where there isn’t a lot of knowledge. It’s the difference between interpolation and extrapolation.

To go after biological pathways where there hasn’t been much success in the past — and design entirely novel classes of drugs — a different approach was needed.

How does Gavilán Biodesign do it differently?

Even in a new molecular space, the laws of physics still rule. Our hybrid system uses the best of A.I. and the best physics-based molecular dynamics models. All natural phenomena has to answer to physics; they’re the forces that drive the universe.

We are the only company to use thermodynamic ensembles to model continuous movement.

Then we have a parts library of thousands of molecular parts. Most of these parts have a dozen atoms or so. We don’t bring a drug in from a preset library to evaluate it; we generate every possible combination of those parts, inside the target pocket, simultaneously measuring the impact of every part on the affinity, stability, and specificity of the compound. Every building block of the design is ideal for the target.

While our competitors search through a few million compound variations for the best fit — and the biggest molecular library in the world has 230 million compounds — we can easily and efficiently search through billions of possibilities.

The slightest differences can have huge effects when dealing with van der Waals forces, which repel at one distance, then attract at another. A 0.5 angstrom difference in position can go from a bad clash to a favorable interaction.

Before you came to IndieBio, none of you had experience pitching business partnerships and negotiating deals. But in four months here you already have signed and delivered on a deal with a pharma company and are negotiating four more.

Everybody whose become an entrepreneur has had to learn to do so, whether they were a lawyer, or an accountant, or a banker, or a scientist. And I actually think scientists make the transition better than other people do.

Being an entrepreneur is remarkably similar to science. We’re used to operating in absolute uncertainty. We don’t pretend we know how to sell, or know how to cut a deal. Instead, we experiment rapidly and learn. We form a hypothesis, test it, and gain the most amount of data as fast as possible to improve. Our scientific inclinations apply surprisingly well to entrepreneurship.

So we didn’t go to companies and sell ourselves. We went into meetings to learn what problems and stress points they were having. Then we explained how our technology could help them with their problem. It was more about problem solving than pitching.

How did your time at IndieBio change your business model?

When we first interviewed with IndieBio, we were thinking of just selling our software. We wanted everyone to have it and use it.

During IndieBio, we’ve really learned to shape Gavilán’s strategy to create new value. Not just to replace the software chemists were using. And so that meant moving from a high-volume service business model to using our design tools for what they’re uniquely great at, creating new therapeutics in the highest-value problem spaces facing medicine.

As we’ve done a better job of explaining how we can do that, the most exciting thing is now seeing pharma companies come to us, wanting to design drugs for targets that have long been considered undruggable.

How might your company change the therapeutics industry?

Consider cancer. Right now, precision medicine is pretty good at designing drugs for certain well-known biological pathways. But there’s two major problems with that. The first is that the most powerful biological pathways are not well-known, or else we haven’t had enough success targeting them to even learn how to do it better.

The second problem is that a cancer tumor is highly mutating. The genome changes, and so the protein shape changes, and drugs that worked for maybe a year in patients, now fail. Almost everyone has a loved one who got cancer treatment, recovered for awhile, and eventually succumbed.

Our software has made it possible — for the first time — to discover how a tumor will mutate, years before it actually happens in a patient. We can “discover” it while we are designing the drug itself in the computer. And so we can design drugs that work not just against the tumor before it mutates, but the drug will still work after it mutates. And not just one mutation — all likely mutations.

We see a new age in medicine coming, where massive killers like cancer could be under control. The way polio is a thing of the past, today.

What’s the next year look like for Gavilan Biodesign?

While some of our partnerships with pharma companies are confidential, I can characterize them broadly.

There are undruggable targets that nobody has been able to hit with sub-micromolar affinities to date. You really have to get a 1000x better than that — down to nanomolar range — for a drug’s potency to make a difference in patients.

We are designing several of these in silico. We’ve already delivered one set, and will be delivering more in the coming months to other partners. Then it will take our partners a few months in the lab to confirm the accuracy of what we’ve designed. Even just from these in vitro lab tests, they’ll be able to tell if we are hitting the targets with nanomolar affinity.

When the industry sees the results, we hope it will blow people away. They’ll realize whole sections of biology are now targetable.

Watch Gavilán Biodesign pitch on IndieBio Demo Day, Tuesday June 25th in San Francisco or via LiveStream. Register here!

CASPR Biotech: Revolutionizing Molecular Diagnostics

The CRISPR Cas complex has been a game-changing technology for gene editing. CASPR Biotech is using the incredible accuracy of CRISPR for something different — to revolutionize medical diagnostics.

We spoke with company founders Franco Goytia and Carla Giménez.

There are a couple other prominent companies also using CRISPR-Cas systems for diagnostics. What’s different about your focus?

We are rapidly developing a device for hospitals to quickly detect if a patient has an antimicrobial resistant infection. This is a huge problem for hospitals. It’s not just that 2 million people in the US every year get infected with superbugs, or that the infection rates are even higher internationally. When a patient walks into the hospital with a fever of unknown origin, it takes between 24 hours and three days to amplify the DNA of the bacteria to determine if the patient has AMR. During that time, the patient has to be isolated, making it very stressful and expensive. For every one patient found to have AMR, nine more have to go through this isolation. And during that time, they’re started on wide-spectrum antibiotics, which makes the global problem worse.

How does your solution change that?

We can diagnose AMR infections in under an hour. Most superbugs have one of three sequences of DNA that make them resistant. We code our Guide RNA to detect those, and if they do, our Cas enzymes trigger a signal. Not only does it do so in under an hour, but does so more accurately, and cheaper.

You already have this working?

Yes, in the lab. As well, at a hospital in Argentina we have tested our system to detect infectious diseases like Dengue virus. These aren’t yet automated into a device, but our device development is going incredibly well and we are on track to begin a 510K study with the FDA in one year.

You discovered two novel Cas enzymes, one in the Cas 9 family, one in the Cas 12 family. How did you do that, and how they are different?

Existing IP portfolios held by the primary CRISPR institutions were discovered by searching through the public databases of sequenced bacteria. We went through unpublished data, collected by our partners in the extreme environments of Argentina — regions as diverse as volcanos, high deserts, hot springs, and Antarctica. In these environments, bacteria evolved unique ways of defending themselves against viruses.

We are looking at ways our Cas 12 gives us a competitive advantage. It appears to be more stable at higher temperatures, likely due to the environment where it evolved. Using it at higher temperatures may facilitate other reactions in our system, turning what’s a two-step process into a one-step process.

You’ve been able to make incredibly fast progress during your time at IndieBio. What’s been your secret?

Before IndieBio, we were running on a very thin budget. To order reagents, we might be waiting a few months until we could get the money together. At IndieBio, we got them in a day — and shouted in celebration when they arrived. We showed up at IndieBio really hungry to do science at a much faster pace, to make quick decisions. It’s been an opportunity that we’ve been thankful for, and haven’t taken a single moment for granted.

We’ve also been very inspired by the scientists who created the foundational technologies of CRISPR. The way bacteria has defended itself against viruses has existed for hundreds of millions of years. But it took great imagination to reconfigure it for gene editing. This precedent reminds us, daily, that if we work hard, at any moment we too could make more discoveries.

How big could CRISPR-based diagnostics get?

Certainly, from AMR and infectious diseases we will move into flu detection, respiratory infections, sepsis, and urinary tract infections. But the application go beyond healthcare and the hospital. Just like Google allows us to search the entire internet, CRISPR allows us to search the entire genome for any genetic code. Rapid DNA detection has applications beyond humans into pets, livestock, and plant life. Farming, biosecurity, and new domains of agriculture are all possible.

Watch CASPR Biotech pitch on IndieBio Demo Day, Tuesday June 25th in San Francisco or via LiveStream. Register here!

The MicroBiome is a Drug Factory

At IndieBio, our perspective on gut bacteria is informed not just by the companies we’ve invested in that do human microbiome science, but by all the companies in our portfolio who work with bacteria and biomes in diverse sectors from the Future of Food to the Future of Energy to Biomaterials to Agriculture.

Early Popularization

A decade ago, the microbiome was a novel curiosity. The public learned that there was anywhere from 3 to 5 pounds of bacteria inside our bodies. Each was around one or two microns long — a tenth the size of cells. The number of them was astounding: estimated at 100 trillion. Exactly how they survived inside our bodies, without being attacked by our immune system, was unknown. Western diets (and overly-sanitary conditions) were eliminating our gut diversity; westerners had lost a third of their microbiome diversity, and flora diversity was correlated with health — across all animals, and all conditions. Probiotic drinks showed up on every store shelf, and soon after came the prebiotic supplements that gut bacteria feed on — oligosaccharides, fructans, and galactans.

A New Metaphor Emerges

Society grew to appreciate how the microbiome was important to health. Early research showed the gut was the source of 90% of our serotonin, and 60% of our oxytocin. That state of your gut was directly connected to the state of your mind. For awhile, the gut was often characterized as our “second brain.”

It’s time to upgrade that metaphor. Yes, the biome acts on our brain — but it acts on just about every other part of our body, too. The microbiome is more like a drug factory. It’s the “invisible organ” of the body that interacts with 70% of our immune system, generating our circadian rhythms, and turning our genes on and off.

When we say “drugs,” we’re using the term a little loosely to make the point. They’re naturally made. And in many species of bacteria, their output might not be quite a drug, but it’s a bioactive compound that acts on a pathway elsewhere in the body, either as a primary metabolite or a secondary metabolite. In this sense, the line between a drug and a bioactive compound is virtually indistinguishable, as the definition of a drug is anything with physiological effects. Traditionally, what we meant by “drugs” was that they were made outside the body and then put into the body. Arguably, most of this definition holds, as the bacteria are not of our body, even if they are inside it.

The Drug Factory’s “Top Sellers”

To list all the drugs made by bacteria in our bodies would take far too long. But here’s a short, starter list — solely for the purpose of illustrating the point that the microbiome has widespread impact on the body, for both better and worse:

  • Histamines, both pro and anti-inflammatories
  • Beta-glucuronidase / hormones / estrogen & estrogen cancers
  • Short-chain fatty-acids / histone chrotonylation / HDAC2 / gene regulation
  • 5-HT biosynthesis / Enterochromaffin cells / Serotonin, brain neurotransmitter
  • Chylomicrons / energy-rich triacylglycerol
  • Tyramine / blood pressure & hypertension
  • Microcins that block salmonella
  • Oxalate / protein transporter SLC26A6 / prevents kidney stones
  • Zonulin / haptoglobin 2 / atherosclerosis
  • Glutamate & cytokines / Vagus nerve / Oxytocin
  • Tryptophan & tryptophan antibiotics
  • Glucagon Peptide 2 / GLP2R / bone and neuroprotection
  • Butyrate / Insulin Sensitivity / Diabetes & Obesity
  • Deoxycholate / fat reduction
  • A-tocopherol / Vitamin E / free radical scavengers
  • G-aminobutyric acid / neurotransmitter / muscle tone
  • Cholate / FXR transcription factor / antimicrobial peptides
  • P-aminobenzoate / Folate / blood cell creation
  • Eicosatetraenoic acid / Endocannabinoids anandamide and 2-AG
  • Commendamide / GPR132/G2A / prevents autoimmune disease

All of the above are from the gut, but the gut isn’t the only place we have bacteria. A skin bacteria, staphylococcus epidermis, fights skin cancers — producing 6-HAP, which inhibits melanoma and lymphoma tumor cells.

Other Mechanisms of Action

Making drugs outright is only one way the bacteria in our gut do their work. Another way is that they chop free bioactive peptides or small molecules from longer chain proteins. A lot of what we eat is digested by hydrochloric acid and protease actions into basic building blocks. But food proteins also contain certain biochemical strings that, if chopped correctly, are then biologically active.

The microbiome also interferes with medical drugs. 80% of our current medical drugs are metabolized in the liver, but 20% of the drugs on the market are metabolized by gut bacteria. Since some people have different flora than others, these drugs tend not to work as intended for certain people. For instance, the emerging market of Anti-PD-1 checkpoint blockade immunotherapy has only a 10% success rate. It’s still a matter of debate just how to get that rate up, but many of the solutions being researched involve first transplanting necessary microbiota into the patient. About 50 medical drugs are now understood to be codependent on gut bacteria populations.

The Birth of Microbiome Therapeutics

The race to translate this research into commercial therapies is well under way. There are at least 6 drugs in development to treat cancers, from solid tumors to mucositis, with one candidate already in Phase II. There are three drugs in development for obesity, and five in development for diabetes, with one at Phase II. Fourteen drugs are being developed for Crohn’s and ulcerative colitis, with one of each at Phase II. There are drugs for lactose intolerance, for dental caries, for repeated urinary tract infections, for celiac disease, and several skin diseases, with one in Phase III for acne. Revenue out of this market is expected to begin in 2021 and reach $10 billion by 2024, continuing to go up steadily in the decade beyond.

We view the acceleration of this pipeline as proof of its market potential, but not necessarily as evidence that science has strong command and control over gut bacteria and all they interact with.

Finely-Tuned Control (and Effects)

To gain precise command over the drug factory, a variety of tools and competencies are needed. Science teams with these expertises are what IndieBio looks for and what drives our investments.

  • Daily Fluctuation Tracking. Most microbiome research today uses single-shot samples of patients’ stool samples. But disease states tend to correlate with dramatic, short-term swings in the species population. For researchers to model these correlations, they desperately need a low-cost assay to track population swings. When such a tool is available, we believe it will be widely used — by all manner of researchers, even those who don’t currently factor in microbiome effects. It will also become a common biomarker in clinical trials, and then be required as a companion with microbiome therapeutics.
  • Personalization. Because everybody’s microbiome is unique, and because the bacteria interact with each other, off-the-shelf probiotics are likely to work for some people, and not for others — or, to avoid undesired side effects, they have to be dosed at numbers that are too low to have much impact at all. Companies that built trust with consumers making personalized probiotic services will be able to grow into more and more effective blends.
  • Setting You Up for Life. An infant’s microbiome fluctuates continuously in the first three years, but then largely stabilizes (with the exceptions around the disease-states described here, when health and the microbiome both swing together). There are two significant opportunities in this space. First, how to help an infant’s microbiome, from the first weeks to the first years, and second, how to optimize the biome around that stabilization transition —for a lifelong impact. In the US today, 32% of babies are born by caesarian section,
  • Shared Metabolites. Bacteria by themselves are not the same as bacteria in a biome. A biome is an ecosystem; the bacteria interact, regulate each other, and the metabolites from some bacteria become the feed for others, in a chain reaction. For this reason, transplanting and colonizing individual strains is often ineffective. It’s not enough to formulate a strain in a synbiotic that combines the probiotic with a prebiotic — as soon as that hits the gut, other bacteria may suppress it. Companies that have worked out the interactions within a consortia of bacteria have a much better technology platform.
  • Variants Within a Species. Most news about microbiome-health correlations is based on research looking at relative species populations. People with more of strain X have less of health condition Y, and so forth. But there is still a great deal of genetic variation within a species. Think about all the humans on the planet for a moment — we are all one species, but our DNA (and our health) varies meaningfully. Some of the best microbiome research investigates these differences; cohorts of people with the same species, but some have variants of that species — and dramatically different health functions as a result.
  • Precision editing. Rational design of the bacteria genome is seemingly inevitable. Researchers today are busy editing microbiota as a way of understanding what the edits do — attacking it node by node. The challenge this path faces is that bacteria have ways of sharing their DNA, so precision edits could spread around a microbiome in unintended ways. One approach at a solution is to make the edits in the bacterium chromosome, not in the plasmid. But this has had mixed results.
  • Culturing the Unculturable. 99% of the bacteria found in the wild have been unculturable in the lab; they grow in unusual conditions. A less extreme version of this occurs in the human gut, where some bacteria that have been identified as beneficial have unconventional properties and are particularly hard to colonize. Researchers who have developed expertise in culturing them have an advantage over researchers who’ve merely identified them.

At IndieBio, we are always looking for the next great microbiome company. We don’t just invest in startups — we help create them, often working with post-docs and principal investigators to build a team and transform them into scientist-entrepreneurs. To learn more, visit https://indiebio.co/

Further Reading:

https://www.cell.com/neuron/pdf/S0896-6273(19)30117-5.pdfDiscovery of genetic variants that protect against obesity and type 2 diabetes could lead to new…
Around four million people in the UK carry genetic variants that protect them from obesity, type 2 diabetes and heart…www.cam.ac.uk
The Gut-Hormone Connection: How Gut Microbes Influence Estrogen Levels | Kresser Institute
Emerging research indicates that the gut microbiome plays a central role in the regulation of estrogen levels within…kresserinstitute.com

https://www.chemistryworld.com/features/the-chemistry-of-the-microbiome/3008630.article

https://www.cell.com/cell-host-microbe/pdf/S1931-3128(18)30267-1.pdfGenetically modified bacteria enlisted in fight against disease
People often take medicines to rid themselves of problem bacteria. Now, a counterintuitive approach – turning…www.nature.com
Profiling the gut microbes passed from mother to baby
How an infant is born (by vaginal or cesarean delivery) and what she eats after birth (breast milk or formula)…www.broadinstitute.org
Can Your Microbiome Be Genetically Engineered to Make You Healthy? | Simons Foundation
Some people just know what they want from an early age. “I asked my parents for a microscope at age 6. I don’t have a…www.simonsfoundation.org
The Role of Microbiome in Insomnia, Circadian Disturbance and Depression
Good sleep and mood are important for health and for keeping active. Numerous studies have suggested that the incidence…www.ncbi.nlm.nih.gov
Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their…
General Another strategy to increase bifidobacteria and butyrate-producing bacteria in the human colon is through the…www.ncbi.nlm.nih.gov
Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major…
The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally…aem.asm.org
Mechanisms Linking the Gut Microbiome and Glucose Metabolism
The microbiome is an integral part of the human body with the highest density of bacteria in the gut, ranging from 1 ×…academic.oup.com
Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple…
Biochem Pharmacol. 2018 Nov;157:51-66. doi: 10.1016/j.bcp.2018.08.037. Epub 2018 Aug 30. Reviewwww.ncbi.nlm.nih.gov
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
Resident gut bacteria can affect patient responses to cancer immunotherapy (see the Perspective by Jobin). Routy et al…science.sciencemag.org
Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts
Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by…www.ncbi.nlm.nih.gov
Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary…
Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA…www.nature.com
Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis
Yano, Jessica M. and Yu, Kristie and Donaldson, Gregory P. and Shastri, Gauri G. and Ann, Phoebe and Ma, Liang and…authors.library.caltech.edu

The Most Incredible Technology You’ve Never Seen

Guest post By Bryan Johnson, founder of Kernel, OS Fund, and Braintree

Saving the world (or some subset of people in it) is in vogue among the world’s wealthiest.

Jeff Bezos has a rocket company, Blue Origin. Bezos believes our future is extraterrestrial, and his rocket company exists because he thinks the price for getting anything off this rock is too damn high.

Bezos is not alone. Elon Musk is also building huge, reusable rockets. He wants to see humans fly to Mars, initially on a lark but eventually for forever.

This type of long-term thinking about the future of our species coupled with serious investment is important. But Bezos and Musk (and most other investors) are missing the most significant — and smallest — technological opportunity to save humanity.

No one has captured this tech blindspot better than my friend and Ginkgo Bioworks Co-Founder Jason Kelly. He did it by showing an image like this:

“What’s the most advanced piece of technology you see on this desk?,” Kelly asked his audience. The correct answer is in green.

A $4 houseplant is one of the most astonishing objects ever assembled. It’s a biodegradable, carbon-capturing, self-replicating, solar-powered work of art. Have you ever bought an electronic gadget that even comes close?

The mind-bending fact that a common shrub is more advanced than the latest MacBook Pro is overlooked by almost everyone. We fail to see it for a simple reason: the coolest parts of a plant can’t be seen. Not with the naked eye, at least.

It’s at the molecular level that plants fix CO2, soak up sunlight and churn out nutrients that we can eat. Way down at the level of atoms and molecules, the most mundane living objects are doing things that our best engineers can only dream of.

Small solutions to big problems

Humanity faces enormous, imminent challenges. The way we use energy is poisoning the planet, we are on track to use up many of our most important non-renewable resources, and we are ill prepared for the next inevitable global pandemic. And that’s just a small sampling of the challenges we see coming; there are dozens more around corners we can’t see around.

Major advances in deep tech – the marriage of hard sciences and emerging technology –  is going to be critical if humanity is to survive these challenges and thrive, but most of the money in the world is maintained or managed by people who do not have formal scientific training. For example, just 5% of the Forbes richest 400 people have formal scientific training. Most therefore invest in things they’re familiar with, like real estate, software and finance.

I founded OS Fund to support the scientists entrepreneurs bringing deep tech to market; leveraging hard sciences and technology to rewrite the basic operating systems of our world. Atoms, molecules, genes and proteins can be designed like never before. The biological world has already demonstrated what’s possible on this scale — if we’re going to aim big as a species, it’s time we think small.

At OS Fund, we don’t invest in particular problems. Instead of trying to solve energy or climate change or the spread of disease, we invest in the foundational technology that could be applied to solve all problems. In the same way that early computer companies like Intel, Apple and Microsoft helped spawn the modern era of computing, we aim to do the same thing with atoms, molecules, organisms and complex systems.

The scientists at Ginkgo Bioworks, one of the first companies in the OS Fund ecosystem, are charting their way by designing bacteria that puff out perfume, crops that fertilize themselves, gut microbes to make medicine, and much more. With three highly automated foundries up and running, the company is poised to upset almost every industry you can think of.

Arzeda, another OS Fund company, is using computers to design new genetically-encoded nanomachines, otherwise known as proteins. Although most of us know proteins only as food, these intricate biological objects actually do almost all the work needed to keep cells alive. Designing new proteins from scratch will let humanity play by biology’s rules, meaning we can design our way to better food, fuels and chemicals in the greenest way possible.

Another OS Fund company rewriting our world is NuMat, where they’re  arranging atoms in MOFs (metal organic frameworks) to create the most powerful sponges you’ve never heard of. NuMat works at the intersection of high-performance computing, chemistry, and hardware systems to design and manufacture materials that can filter non-renewable material like xenon out of thin air.

But wait, I can hear you thinking, isn’t AI going to eliminate the need for this kind of innovation?

That may be the grandest challenge of them all. How are we as a species going to thrive in a world where artificial intelligence can do more even than our best minds? The answer again requires innovation at the molecular level.

I started Kernel, a neuroenhancement company, personally investing $100M, to help ensure that humans and AI evolve together. We are working at the bleeding edge of neuroscience, solid-state quantum devices, materials science, and photonics to develop the science and brain interface products to allow people to bring their brains “online,” and use that data to radically improve themselves. Radical human cognitive improvement is a requirement if humanity is going to thrive in the future we are barrelling toward. We are a few tools away from an evolutionary leap; what’s on the other side of it is beyond what we can possibly imagine.

Investing in huge rockets, brain interfaces and tiny molecules isn’t actually that different. Developing a green global economy and exploring beyond our pale blue dot are complementary — not competing — visions of the future. It’s time investments in our future here on Earth get the attention and scale afforded those focused on our future in the cosmos.

Filtricine: A drug free approach to treating cancer

In the last two decades oncology has seen a revolution as treatment transitions to targeted genetic drugs. Yet each therapy relies on a specific genetic profile, limiting the number of diseases it can target. Filtricine is taking a unique approach to treating cancer, targeting changes in cancer cell metabolism rather than genetics. Their approach aims to provide a side-effect free approach to treating a broad range of cancers which all share these metabolic weaknesses.

I chatted with Xiyan Li, co-founder and CEO of Filtricine about his origins and the company’s mission to revolutionize oncology.

Can you tell us a bit about how you became interested in the science of metabolism?

I’m a trained biochemist so I always understand biology from the chemical perspective. Basically, I believe that chemistry is the foundation of life. For life, you only needed two things: metabolism as the chemical foundation, alongside intelligence. If you understand the chemical foundation, you will have a really powerful solution to solve a lot of biological problems.

How did you take this theory and turn it into Filtricine?

In the world of cancer, many people are just focusing on what’s wrong in the cancer cell’s genome, what genes are mutated, and how those functions may contribute to this malignancy. It may be easy for people to forget that because cancer cells are so good at evading drugs by quickly evolving new mutations, it’s probably not the best idea or best strategy to treat them with drugs that are targeting one form of a gene function. My co-founder and CTO, Jimmy, and I, we were both working on metabolism where it is very well known that cancer cells have a very distinctive type of metabolism, which we usually call the Warburg effect. We take advantage of this change in cancer metabolism to create a new type of therapy.

Can you tell us about this new therapy that you’re taking forward into preclinical studies?

We are focusing on reprogrammed metabolism in cancer cells. Due to cancer cells rapid growth, they make a critical compromise: they give up the ability to synthesize many nutrients inside in the cell. These cells have to rely on getting those nutrients from the blood, but normal cells aren’t reliant on the supply available in blood as they can synthesize these nutrients within themselves. First, we have to find out what these nutrients are and then figure out how to take just those nutrients out of the blood, then we can achieve killing cancer cells while simultaneously leaving normal cells unharmed.

The actual product we’re making is a fully drug free nutrition deprivation diet and dialysis. We give patients a diet designed to specifically deprive the body of certain nutrients cancer requires, but are not necessary for healthy cells. The second part is a plasma-mimicking dialysate designed to further pull these specific nutrients out of the body.

How do you think this approach, if successful, can change the pharmaceutical industry?

I think that there are two things. First, we are a drug-free therapy, so we do not use any drug content and our products are a solution, a mixture of things known by the body to be non-toxic, so we can quickly customize solutions based on individual requirements. This means that it is totally customizable, yet scalable. Second, we are broad-spectrum. So far, almost all kinds of drugs are developed by targeting just one particular indication, while our products have demonstrated a broad spectrum efficacy, and it’s likely that we are hitting on a universal feature that is underlying this cancer metabolism. This means that we can actually kill a variety of cancers through attacking this common feature.

What are some lessons learned transitioning from a research scientist into being an entrepreneurial scientist here at IndieBio?

We were scientists, not entrepreneurs, before joining IndieBio, so we thought of things very differently than after going through the IndieBio program. As a scientist, you only want to be the first and that is your focus, but as an entrepreneur, you want to be the best. What you want is to figure out and execute a viable solution to make your products that are as good as possible.

What are some important milestones that you’re looking to hit in the near future as a company?

We are currently at the preclinical stage, our aim is to move to human trials as soon as possible.

Watch Filtricine pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream.
Register here!

Clinicai: Detecting Colorectal Cancer in Your Toilet

The successful treatment of cancer lies in early detection. If we can detect it as early as Phase 1 and 2, the outcomes for therapy are significantly better. Unfortunately, symptoms oftentimes will not present until Phase 3 and 4 which limits effectivity of therapeutic interventions. Clinicai is making a noninvasive monitor for colorectal cancer with a device that hooks on the side of your toilet. We asked Chun-Hao Huang, co-founder and CEO of Clinicai, about his journey as an entrepreneur.

How did you become interested in the early detection of colorectal cancer?

Chun-Hao: During my Ph.D. I built animal models mimicking human colon disease to find biomarkers and therapeutics. I was passionate about gastrointestinal biology and learned how to monitor mice’s poop every day, dissect the intestine and colon for pathology examination, and realized that, wow, the stool is actually very closely related to our gut system. I also realized that for colorectal cancer, if we can detect early, we can even use current treatments to cure this disease and every single patient would have the chance to survive.

I have now been working in cancer treatment for more than 10 years and have seen that the field puts a lot of effort into trying to develop new therapeutics. However, a lot of diseases, especially colorectal cancer, can be solved even right now if you detect it in time. But the early detection or preventative angles are not so appreciated by the field. So that’s why I started to focus on early detection because I believe the way to actually make cancer manageable today is by monitoring your body to capture the signals at the very outset so we can apply current therapies when they would be most effective.

How did you decide to start the company and how did your team come together?

Chun-Hao: I almost was a scientist for life, and I really wanted to make a big science discovery creating a way to solve cancers. When I was at the Lindau Nobel Laureate Meeting, I heard a lot of top scientists and Nobel laureates talking about the future of medicine and how to manage diseases like cancer. The meeting inspired me but I realized it is actually a very long process from research to benefiting humanity, and I started to wonder if there is a way we can speed up this process and bring biotechnology into our daily lives.

So I asked what is the best way we can accelerate scientific discovery and also bring biotech to our daily life? It’s very interesting to me that the device we use daily is a cell phone when biotech should be the technology we are using every day. I found the answer is to start a company because you can put a lot of resources into building a product actually related to daily life. I met my co-founders Medina Baitemirova, Juan Carlos Guáqueta, and Mr. Toilet Jack Sim at Singularity in NASA Ames, and later on our CTO Dr. Ya-Ju Lin. We all have different expertise, but we share the same vision that we want to detect disease like cancer early. We wanted to make the most comfortable diagnostic platform, which in the end ended up being a toilet. We want to make people actually enjoy health monitoring.

How does your technology work? What is that key insight?

Chun-Hao: It’s pretty interesting, when we started developing this technology we hoped to achieve three things. First thing, if we want to do the most comfortable monitoring and diagnostic at home, then the technology needs to be non-invasive where the user puts in the minimum effort to maximize regular monitoring. Second is digital information; we need to have a technology which can digitalize the substance we detected. Third, it needs to continuously gather the data. The most current methodology, like biomarkers or chemical methods, are not able to do that, so we started testing a bunch of different sensors. We started with a narrow range optical sensor and in the end, we find out that there is a large wavelength hyperspectral imaging originated from space technology that can help us to gather all the information from the stool.

That’s how we started using that technology to check stool samples and that’s how our technology derived. This is not just technology we can use in the lab, or in the hospital, we actually integrated that into a prototype device that will snap on a toilet. Everyone can attach that device at home, I even tried it myself. Then it can turn on when you sit on the toilet and then gather the data. I think these will be pretty powerful in the future, not only for cancer detection but also can help detect other preventable diseases.

What lessons did you learn transitioning from scientist to entrepreneur at IndieBio?

Chun-Hao: As a scientist, every day you go to a lab, you have the experiment you want to do, but some experiments could take a couple weeks or even longer. But when you are designing your experimental plans in a startup environment, like IndieBio, you need to think about how we can leverage different resources to make this process faster. That’s actually what I really like about this environment because you’re still doing the very cool science, but you have a way to speed it up. The other thing which is quite important is that here we’re thinking of how we can actually turn our technology into a real product and then benefit people’s lives. As a scientist in the lab, you try to solve problems, but you don’t usually think that this can actually work in our daily life.Since we joined IndieBio, we have started to talk to the FDA, we talked to insurance companies, we talked to doctors, and especially to the users. We are building things they really want and also doing cool science. This is what makes being a scientist-entrepreneur great.

How do you think your success as a company will change the diagnostics industry?

Chun-Hao: I used a proteomics approach when I was in college to identify biomarkers and in the past 10 years I didn’t see that many biomarkers come into the diagnostic field. I think it’s time that we need something new to disrupt this field. Before we always relied on one or two biomarkers, but at Clinicai we believe the key is to detect signatures or patterns of the disease.

That’s why at Clinicai we are trying to get signatures and patterns from your stool or urine samples and then we use the machine learning to understand those features. I think that that will change the way we think about diagnosing. The other strong advantage we have is to actually bring the diagnostic into our home. Before it’s been pretty difficult and we find our best niche at home where our bathroom and toilet have a lot of information every day. We hope in the future everyone can really enjoy health monitoring and can live longer and healthier.

What milestones are you aiming to hit in the near future?

Chun-Hao: I want to thank IndieBio because we actually met our milestones here. We’ve built our first prototype, which we never thought about that before. The milestone for next year is to improve our prototype and then work with hospitals to install the device in hospital toilets or in patients’ toilets at home to monitor their stool signals for colorectal cancer detection. After that, we plan to go through the FDA path and we are pretty positive about that. After that, we hope our device will be in everyone’s home for future health monitoring and diagnosis.

Watch Clinicai pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream. Register here!

BioROSA: Early Blood Test for Autism

BioROSA is building a blood-based test for diagnosing autism. Autism currently is diagnosed at age four, on average, with behavioral testing. Children are missing critical windows of opportunity where early diagnosis and access to treatment could improve prognosis. At BioROSA, we are mission-driven to enable earlier detection, potentially even before the child is born, in order to achieve better outcomes for children.

What got you into autism research?

John: It started way back in high school as one of my best friend’s brother has a severe form of autism. Seeing such an impaired person at an early point in my life made me wonder what could make the brain function that way, and this led me to do a lot of different neuroscience work in college. I was working on clinical studies in neurology and rehabilitation medicine for stroke and traumatic brain injury patients at UPenn for a while after college, doing some really cool brain imagining research. At Arkansas Children’s Hospital, where I worked from 2010 to 2017, I got involved in cutting-edge autism research and clinical operations while working on clinical studies involving biomarkers for detection and studies aimed at developing treatments to address core symptoms of autism. While at Arkansas Children’s, our team created one of the leading clinical and research operations in this country. It was an amazing group of scientists committed to improving patients’ lives, and the mission and values of that team live on in BioROSA. We highly value these collaborations and relationships with excellent clinicians and researchers.

What prompted you to start the company and how did you meet your co-founders?

John: Working in academia, I was frustrated with how slowly research and development progressed, and I was introduced to entrepreneurship and startup culture at a time when I was losing my passion for academic research. While we were doing amazing, cutting-edge research and changing lives for patients in the clinic, the pace of the work and the inability to treat or see patients from around the world who couldn’t afford to come to see us clinically was really heartbreaking. Though we were seeing amazing outcomes and were publishing a lot, we were too boxed in from an administrative perspective and I started to feel that we weren’t doing enough for patients in need. I feared we would never be able to truly address the autism problem from inside the walls of academia, something needed to change in order for advancements to occur. Thus, BioROSA was born. We have licensed intellectual property to commercialize a novel diagnostic test that can transform autism clinical care and diagnosis. What’s amazing is that our technology is based on what I worked on in Arkansas with a scientist I truly admire and adore, Dr. Jill James.

In working to find a co-founder for BioROSA, I had researched companies who had previously tried to do something similar. One of the most noteworthy was a company called SynapDx, in which Dr. Marie Causey was a co-founder, and when I contacted her she luckily happened to be available. It was serendipitous that she was interested in becoming co-founder and CSO at BioROSA, Marie’s experience in the startup world, in establishing diagnostic labs, and in developing clinical tests is a great fit. We make probably an unorthodox but great co-founding team. We bring different perspectives and she holds me accountable and practical for my big picture dreams!

Let’s talk about your technology. What is the key insight and how did you come up with this diagnostic?

John: We have a body of research based on over 15 years of data in which metabolic systems have been consistently shown to be abnormal in patients either diagnosed with or at risk for autism. Dr. Jill James, another co-founder in BioROSA, made the key biomarker discoveries, but the breakthrough came when our SAB member and collaborator Dr. Juergen Hahn applied machine learning to come up with a robust classification algorithm. We have obtained a global exclusive licensed to Dr. Hahn’s IP from RPI. Juergen is our number one champion and a constant contributor that is extremely hands on.

During the IndieBio program, what are some lessons you’ve learned transitioning from scientists to entrepreneur?

John: First off, I don’t consider myself to actually be a scientist but more an entrepreneur with a passion for science and improving healthcare for patients. I’m fortunate to be surrounded by amazing scientists on our team. As far as lessons learned? You must really get out there, hustle, and be a constant driving force in order to ensure your company has a chance of success. As Arvind said from day one, “nobody cares”. It is your job as a founder to make them care and show why you will change the world and why your team is the capable group that can get things done. You must have extreme perseverance, resilience, structure, organization, meticulous thinking, and as much as I hate it, patience, in order to get things going and for you to position your company into the best chance to take flight. I think that really getting outside of the office, really trying to promote your business, knowing what your customers really want, and trying to promote your cause can go a long way in getting that initial traction. Once you start figuring these things out and getting those first bits of traction can be a pivotal inflection point for your ultimate ability to scale, grow, and succeed.

How do you think the success of your company will change the way autism is currently being diagnosed?

John: We will provide clinicians with a much-needed tool that is missing in the current process for determining who’s at risk for autism and to get at-risk children into services faster than is possible today. In a way, this allows the system to be more proactive instead of reactive in diagnosis and treatment. The ultimate goal is to create opportunities that can lead to prevention, or at least more optimal outcomes, for children.

What are the milestones you’re hitting in the near future?

John: Our first milestones is to conduct a prospective clinical trial of 800 patients in a multicenter study within the next 18 months to bring our first product, an ASD screening tool, to market. The success of this opens the way for the development of our flagship product, a pediatric ASD diagnostic test that will detect autism before children ever develop behavioral symptoms. We plan to secure contracts with pharmaceutical partners to conduct studies to demonstrate the clinical utility of our test as a companion diagnostic for ASD therapeutics as well and to create a new standard of care based on biology (instead of behavior) for this challenging disorder.

Watch BioROSA pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream.
Register here!

Serenity Bioworks: Unblocking Gene Therapy Delivery

Gene therapy recently has been extremely exciting in the news. However, the limitation of gene therapy is ineffective delivery. When injecting genes to be delivered, especially in adeno-associated virus (AAV), we are seeing an induced immune response where the body starts clearing out the virus. Serenity Bioworks is working to rid the immune response and instead induce a tolerance response, allowing the AAV to be dosed and redosed as necessary.

How did you become interested in immune tolerance?

Cody: The immune system is one of the most complex things in the universe, and that in itself is incredibly interesting. There is a lot yet to figure out. The more we understand about the immune system, the better the development of therapeutics will be able to unlock the next frontier of medicine for monogenic diseases. From a holistic viewpoint, our compounds have been detected in contexts where our own cells and microbiome communicate with the immune system to induce tolerance, as well as other instances where immune tolerance is present. Serenity’s key insight and my own interest in immune tolerance induction came from doing research in this area.

When did you decide to start the company and how did your team come together?

Cody: I decided to start the company after I developed my ideas in grad school, which involved applying certain concepts I learned. I decided to raise some money to look at these ideas a little bit more. At the time, I was living with Spencer Berg, my co-founder, and I would come home and talk about what I was up to, certain grants that I’d raised, pitch competitions I’d won. And then he developed an interest as well. Eventually, we got accepted into an incubator in Canada to further develop the technology behind our company.

So how does your technology work? What was that key insight?

Cody: The key insight is understanding how your immune system decides not to attack your microbiome or your own cells. There’s a set of compounds that kept on popping up in these contexts — this is what I was looking at in grad school, though in a different way. We thought that this would be a really good solution for developing tolerance for gene therapy products.

During IndieBio, what lessons have you learned transitioning from scientist to entrepreneur?

Cody: There are so many lessons! For one, you pick up a lot of jargon as a scientist, and you’re used to communicating with scientists. An entrepreneur has to communicate to a broad range of audiences. You might be talking to an accountant, a lawyer, an investor… You will find yourself talking to people who have never heard of your field before. As an entrepreneur, it’s incumbent upon you to properly communicate to a broad range of audiences. You have to lose all of the jargon you pick up in academia and adapt.

And how do you think your success as a company will change the gene therapy industry?

Cody: We are developing an immune-compatible gene therapy. For the last 30 years, gene therapies have been combatting against the immune system. We want to work with the immune system to unlock these therapeutics. If we’re successful we will make these therapeutics safer and more effective.

What milestones are you aiming to hit in the near future?

Cody: In the near future? We’re going to wrap up our first set of studies in vivo, raise our next round of financing and conduct IND-enabling studies next year. We’re also looking to develop partnerships with pharmaceutical and gene therapy companies that are running into issues with the immune system.

Watch Serenity Bioworks pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream.
Register here!

Convalesce: Curing Parkinson’s Disease with Stem Cell Therapy

Neurodegeneration is one of the most devastating diseases of aging, and today there is no cure. Stem cells are a very promising way of regenerating the faulty neurons, which would potentially create a cure. Convalesce is working on injecting stem cells into the brain using a special matrix that mimics the brain’s architecture, allowing the stem cells to survive, differentiate. and reconnect those neurons for Parkinson’s patients. We chatted with Subhadeep Das, co-founder and CEO of Convalesce.

How did you become interested in stem cell research?

Subhadeep: When I was a grad student I read a lot about the potential of stem cells in regenerative medicine and I was fascinated by the things stem cell therapies could unlock. Especially so for diseases that cannot be treated using traditional medicine, or are facing certain limitations within current treatment options. Stem cell-based treatment could overcome these drawbacks and limitations, which is how I got interested in the field. It was fascinating for me to work in an interdisciplinary area and not exclusively in hardcore biology or hardcore material science. I started working at the intersections of material science, especially with nanomaterials and stem cells, and when we came up with extracellular matrices which mimic the natural tissue it was a great thing for us from a science perspective. When we found that it could potentially solve some of the very key problems of stem cell therapy for neurodegenerative diseases like Parkinson’s, we eventually came up with a therapy for Parkinson’s disease using our discovery.

How did you decide to start the company and how does your team come together?

Subhadeep: I honestly didn’t have any plan of starting a company when I began my Ph.D. At that time I was just interested in doing cutting-edge science, but eventually, when I saw the potential of the technology that we developed, I was saddened to see that academia is happy with just publishing some papers. I wanted to push it further to bring the technology to the clinic where real people would get help out of the technology. During the final years of my Ph.D., I decided to take the leap to become an entrepreneur and try to commercialize this technology. Eventually, I started participating in startup boot camps, business competitions to at least have an idea of how a startups work and what are the non-science aspects that I should think of to start with.

After I got interested in entrepreneurship, I was talking to my friends and acquaintances regarding my ideas. My benchmate from IIT Bombay, Amrutraj, got interested and he had the type of cell biology background that was complementary to the skills that I have. We decided, okay, let’s give it a shot — let’s form a company and see if we can bring this thing together to solve the pending science problems and then bring the technology to the market.

How does your technology work? What was the key insight?

Subhadeep: The fundamental insight for us was to understand how stem cells would react to their microenvironment. Subsequently, we engineered that microenvironment specifically for neurons. It was such an amazing technical insight to learn during the process, now we believe that we have a platform where we can engineer multiple tissue matrices for multiple applications. The key for us was the realization of how crucial a matrix is for regenerative medicine for any organ. Most of the biology research has been focused on cells which, while crucial, as they are will actually do the job, if you consider any organ there are a lot of support systems that play a critical role. These were sort of neglected by biologists and we tried to bridge the gap between material science and biology by engineering specific niches for organs or stem cells. This was the insight for developing what we are currently doing.

What lessons did you learn transitioning from science to entrepreneur at IndieBio?

Subhadeep: We learned a lot of things during IndieBio, especially how to run a business. We always think about science and focus on the next scientific milestones, but after coming to IndieBio, we realized that there are a lot of things we need to have an understanding of if we are to bring this therapy to the market. When we started this was just a science project, not a business. Here we benefitted by getting insights on running a business and developing a business model, an idea of manufacturing, and the regulatory hurdles that are coming for us. I’d say these are critical to running a business.

How do you think your success as a company will change the therapeutics industry?

Subhadeep: The traditional therapeutic industry works by generating drugs from small molecules, but there is a whole emerging industry focusing on regenerative medicine which encompasses both stem cell therapy and gene therapy. Even in the cell therapy space most of the companies are still focused on cell type because that’s what comes to a biologist’s mind first: how to engineer the cells and get them to work more efficiently. We are radically changing that approach by engineering not only cells but also their microenvironment. If cells get a much better environment to survive and differentiate in, then they can finally do the job they are sent in to do. I think the holistic approach that we are creating will change the way therapies are done today, the microenvironment is critical for cell-based therapies to be successful.

What milestones are in the near future?

Subhadeep: We aspire to apply our first therapy, which is a stem cell therapy for Parkinson’s, in a human brain. We want to treat Parkinson’s patients as soon as possible. Our key milestone is to do our first human trials so that we know we have a cure for Parkinson’s.

Watch Convalesce pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream.
Register here!

Call for Applications

Biology is the next big technology and we are looking for scientists that will usher the new wave of iconic life science companies.

“Nothing is normal in the new biotech; it’s inherently cross-disciplinary and purposefully attacks preconceptions of what can’t be done.”- Po Bronson

Why Scientists?

Scientists make amazing entrepreneurs due to their technical expertise, problem solving skills, resourcefulness and persistence. Over the years, the number of life science PhDs has been rising exponentially and at the same time running biological experiments is becoming faster and cheaper. Our ability to read, write, cut, copy and paste DNA more efficiently is significantly decreasing costs and increasing speed and accessibility of experiments. Tying these trends together, IndieBio enables scientists to build radically transformative companies through our unique program.

Our Program

We take a design-driven approach to integrate product and business development in continuous feedback loops. Startups can rapidly prototype and get early customer traction at a pace that is closer to an IT startup rather than traditional biotech.

During our 4-month program in downtown San Francisco, scientists leverage $250,000 in funding with our fully-equipped labs, 300+ mentors and a galvanized ecosystem of industry, academia and investors that enables life science businesses to thrive. Our interdisciplinary team works with the companies every day to enable scientists to de-risk their science and business. Together we build the foundations of a viable and scalable business that can impact billions of people.

 

What types of companies do we look for?

We are here to fund scientists that can translate scientific insights into commercializable products that solve large scale human and planetary problems.

The biggest advantage a startup has is the precise focus on solving a problem from first principles. Our most successful founders build on deep technical knowledge with market insights that come from approaching the problem from all angles. As a result, startups create new business models, reimagine antiquated systems, or build industries from the ground up.

We welcome applications of biology for any industry. Thus far, our companies have represented the eight categories below, but we are most excited about companies that bridge multiple categories or invent new categories.

 

Therapeutics

Despite the billions spent in R&D, we continue to treat symptoms and not the causes of disease. New modalities such as immunomodulation and functional metabolomics are setting a new paradigm in drug discovery and delivery. With gene therapy we will have the ability to directly edit our own genomes to fix inherited diseases and transcend our parents’ genetic material. Across all these modalities there has been a rise in platform technologies enabling repeated target and therapeutic discovery.

Regenerative Medicine

Regenerative medicine and tissue engineering will give us control of how we treat damage to our bodies, from losing limbs to restoring loss of function from paralysis to growing whole replacement organs. Furthermore, we can intervene and reverse the processes of aging.

Neurotechnology

We are only beginning to understand the brain. New biological and digital tools are needed to understand and treat neurodegeneration and mental health. Brain computer interfaces open up new possibilities for human consciousness.

Medical Devices, Tools & Diagnostics

Early detection of diseases that can seamlessly integrate in to healthcare workflows not only enhances decision making through precise real-time biomarkers, but also, eliminates centralized labs and administrative bottlenecks that are burdening the healthcare system. The advancement of research tools is critical for unlocking new knowledge that can lead to life-saving solutions.

Future of Food & Agriculture

Food supply cannot catch up with food demand at the same time supply remains inefficient and unethical. New biotechnologies are changing the unit economics of how we produce protein. Vertical integration of food and agtech can enable us to unbundle the food supply system and increase efficiencies of production.

Consumer Biology

Driven by faster and cheaper science, companies will bring biology direct to consumers in an increasingly personalized manner. The first human genome cost $2.7B. Today people can order an at-home sequencing kit for $100. Products are increasingly putting the power in the hands of the consumer to manage their own health.

Computational Biology, BioData, & AI

Biology is rich with data and complexity and companies are increasingly leveraging bio-processes with machine learning and automation, creating bio-feedback-loops to optimize each stage of a life science company: from discovery to manufacturing.

Industrial Biology, Biomaterials, & Clean Biotech

Not only is our demand for commodities unsustainable, the industrial processes for converting commodities into everyday products remains inefficient. Biology is inherently versatile and scalable. Cells, the building blocks of life, live to divide, and under the right conditions they can be engineered to create bio-materials and novel commodities that can then be scaled exponentially using fermentation without harming the planet.

 

Our Application Process

Online Application. Our application process begins with an online submission at http://indiebio.co/apply.

Technical due diligence. Selected companies are invited to a 30-minute video interview that focuses on technical due diligence. We encourage applicants to ask questions about the IndieBio program throughout the process.

De-risking milestones. If the first call is favorable, our team will set up additional calls to discuss the product, the business plan, and discuss the derisking milestones that the company aims to achieve by the end of the 4-month program. Often, homework is assigned to address certain questions. Once discussions are mutually favorable, an offer is made.

Deeper look into how do we evaluate companies. We evaluate companies based on five key questions.

  1. What is the technical insight that gives you an unfair advantage? This is often the core technology that can be patent-protected, whether it is licensed from an academic institution or developed in-house. What advantages does your technology have over competing technologies? How does your technology address the core problems you are trying to solve?
  2. How is the insight made into a product? Science itself is not a product. Product development starts with understanding the end user. What problem are you solving for the end user? What is the form factor? What is the workflow? What are the parameters for a successful drug? What product do you focus on first when you have a platform technology?
  3. How does the product form a sustainable business? What is the go-to-market strategy for roll-out when the startup is cash limited? How to gain adoption? How to navigate regulatory pathways?
  4. Can this business make $1 billion or touch the lives of 1 billion people? Venture capital investment seeks the potential for big returns and big impact.
  5. Is this the team to make it all happen? Arguably, the most important aspect of selecting teams at an early stage is the founders themselves. Do they have the experience and expertise to turn their technical insight into a viable business and propel the company into a flourishing venture? We look for founders who are coachable, able to make decisions rapidly, take responsibility, are resilient, and are passionate about their work. We look for founders who are self-aware and possess a growth mindset.

The interview style is informal conversations and we often instill a mini preview of the IndieBio program during the interviews. Our application timeline is rolling, with set deadlines that batch the interviews. We encourage applying early and sending periodic updates of progress even if you don’t hear back immediately. Updates are also encourage between interviews as it could take time for both sides to come up with good strategies. We also encourage re-applications if you were not selected for one class. Some of our most successful companies reapplied 6 months later with significant momentum. Most ideas and teams will take a while to mature. (Read “I have an idea. What’s next?” for the starter checklist.)

Lastly, we encourage you to due diligence on us. Learn more about our story and our program featured in Neo.Life. Attend or livestream our next Demo Day on Nov. 6th at the Herbst Theatre or watch the previous ones on Youtube. Talk to founders of any of our alumni companies or attend an event at our space.

 

Apply Now!

We look forward to hearing your world-changing idea! Apply now at http://indiebio.co/apply!

MezoMax: The Solution for Slow and Difficult to Heal Bone Fractures

mezomax

Over 600,000 people suffer from slow and difficult to heal bone fractures within the U.S. every year. These ‘non-union’ fractures are common in people with low and imbalanced hormones, such as the elderly, but may also result from infection, inadequate blood supply to the bone, and incorrect splinting. Surgery, which has a low level of success, is the current standard of care. Full recovery from non-union fracture surgery is rare and repeat surgeries are often required.

MezoMax created a first of its kind, convenient, twice daily oral formulation called MMX that works by delivering calcium directly to the bone producing cells to accelerate healing and provide for more complete bone union in non-union fractures. We asked the founder and President of MezoMax, Dmitriy Rybin, PhD., about his discovery and subsequent founding of the company:

How did you become interested in science?

DR: Science is really a tool to better structure and simplify ideas; it is also a means to channel one’s innate curiosity. I’ve always been curious about the variety of the world. My curiosity about our world is diverse, ranging from not only physics and science, but also includes non-scientific exploration. However, it is my scientific training that has allowed me to simplify and connect common principles based upon these experiences.

When did you decide to start a company, and where did your team get together?

DR: My team and I decided to officially start our company a year ago, but this is actually the result of a five year collaboration between my colleagues here in the US and in Russia. I have often thought about starting a company during my 30-year journey in science with my co-founder Dr. Girgoriy Konygin. Our shared work at the Russian Academy of Sciences has been rewarding and is the basis for our company.

How does your technology work?

DR: Our technical approach is based upon fundamental principles of solid-state chemistry reactions that take place under external mechanical loads. Sometimes although the chemical composition of a drug remains unchanged, the molecular crystal is transformed into a new state with unique physical and chemical properties, including a significant increase in biochemical activity. Using this approach, it is possible to obtain new pharmaceutical forms that may not otherwise be possible using traditional methods of fine chemical synthesis or which might otherwise be too expensive to produce.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

DR: Entrepreneurship is a very practical, applied endeavor. An entrepreneur needs to quickly figure out who needs our product, and this became much more important to me when I started thinking like an entrepreneur. It seems rather simple, but it’s not. It’s a pretty big mindset shift. More over, it’s necessary to talk about our product in simple and clear language, and not to use ‘science speak.’ Customers need to understand what our product is and why it’s important to them. Learning to make the extraordinary and complicated be understandable, while still keep it exciting, is no small feat! We could not have adapted to this new way of thinking and articulating our value proposition as quickly as we did without the steadfast support and constant counsel of the IndieBio team. We are and will continue to be grateful for their expert advice.

How do you think your success as a company will change the medical industry?

DR: On the surface, what we do appears to be so simple! In reality, what we’ve done is to create a new and important platform for drug creation, one which is based upon solid-state mechanochemical synthesis. This approach can be used to create new pharmaceutics that were not previously possible or that were too expensive to produce. As such, we believe our approach will continue to be an important basis for much of the future for creating new pharmaceutical treatments.

What milestones are you aiming to hit in the near future?

DR: MezoMax intends to introduce our first compound, MMX, to the US in 2022 for treatment of non-union fractures. Given the extensive clinical safety and efficacy data, we are pursuing an abbreviated approval process based upon the expert advice of four independent regulatory experts. Therefore, one of our first important milestones will be for us will be to meet with the FDA to confirm this viability of our regulatory strategy by March 2019 with the intent of filing our IND by July 2019. We expect to receive our NDA early in 2022, leading to our subsequent product launch.

Watch MexoMax pitch on IndieBio Demo Day, Tuesday April 17th in San Francisco or via LiveStream. Register here!

Vetherapy: Stem Cell Therapy for Our Animal Friends

Vetherapy
AnimalBiome
Photo: AnimalBiome data scientist, Kari Goodman; CEO, Holly Ganz; and research scientist, Yvette Girard, at the JP Morgan CLSA event last week.

We understand the benefits of stem cell therapy for humans. These amazing cells, with their self-renewal abilities, can be taken from areas where they live in the body and transferred to an injured area of the body, where they transform into the very cells that need to be replaced. Companies are making strides to make regenerative medicine more affordable and available. But what about our four-legged friends? Whether it’s a household pet or a farm animal, it’s important that they don’t suffer from a slow or disrupted healing process.

Vetherapy has harnessed the power of regenerative medicine and applied stem cell therapy to animals. They’ve created a wound healing hydrogel for external injuries as well as a stem cell therapy technology for internal injuries, which are both proven to work. We asked the company’s founder and CEO, Pedro Carvalho, more about Vetherapy:

How did you become interested in biotech?

PC: I was always interested in everything biology-related or nature-related. As I started working in regenerative medicine immediately after graduating from Veterinary School, it was always a very strong possibility for me to end up in biotech.​

When did you decide to start a company, and where did your team get together?

PC: I decided sometime during my PhD, more than 10 years ago. Our team actually got together during that time as we were all developing our graduate studies at the same research facility​, but the opportunity to found the company only came later on; we also wanted to solidify some key concepts and outcomes from the application of our technology before taking it to market.

How does your technology work?

PC: It’s difficult to pinpoint the technology itself. Besides our patented wound healing hydrogel, our stem cell therapy technology relies on many years of hands-on work in the lab. This allowed us to really understand some of the flaws and difficulties that the application of stem cells has, and optimize our technology to the best quality end-product​ on the market today. We ship our cells in our proprietary medium, ready to be injected by the vets, without any need for further processing. Our stem cells keep their viability for up to 48 hours and can be injected ​intravenously, intra-articular, epidural, intra-thecal, intra-lesional…without any concerns for any adverse reaction. This makes it extremely easy and accessible for our colleagues at the veterinary hospitals and clinics to apply it in their daily routines.​

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

PC: The mindset is totally different. IndieBio provided us with the tools we needed to gradually embrace that entrepreneur mindset​. It helped us understand what it takes to be an entrepreneur and how to transform your idea/dream into a lucrative and appealing business.

How do you think your success as a company would change the animal healthcare industry?

PC: I believe that medicine is changing and will continue to change even more in the near future. Regenerative medicine is definitely one of the fields ​that has this potential to completely disrupt the way we do medicine, and change not only the healthcare industry, but mostly benefit the people and animals treated with this approach. There are a lot of unsolvable problems for which regenerative medicine and stem cell therapies provide great solutions. The results and evidences are all over the scientific literature and we can only hope that the regulatory authorities will be able to keep up the pace.

What milestones are you aiming to hit in the near future?

PC: We want to focus on the US market and deal with all the regulatory pathways to put our products on the market. As we do this, we will continue to expand in Europe and increase our sales (reaching new markets as well). We keep a network of collaborations with academia and research centers which allows us to be always up-to-date with what is going on in this field, and always have the best solutions​ for different problems. Our main goal is to continue to have the best results, improve the quality of life of the pets we love, and thus become the leading reference on regenerative medicine for veterinary application on a global market.

Watch Vetherapy pitch on IndieBio Demo Day, Tuesday April 17th in San Francisco or via LiveStream. Register here!

Sun Genomics: Precision Probiotics Based on Your DNA

It all begins in the gut. We know that a balanced gut microbiome is key to a healthy (and happy) life. Probiotics, ingestible products that contain healthy bacteria and yeast, are available for people to buy and help with their digestive issues. But not all probiotics are created equal.

Sun Genomics found that an individual’s genome can help identify which probiotic strains are best for the person. By creating personalized probiotics, the company can eliminate the guesswork that’s involved with buying probiotics off the shelf and help people regain control of their health. We asked Sunny Jain, the company’s founder and CEO, more about their personalized probiotics:

How did you become interested in the gut microbiome?

SJ: I’ve studied Microbiology for a decade now and have always had interest in gut health. However, the real turning point was in early 2016. My son was suffering from a dysbiosis and when I went to the local grocery store to pick up a probiotic, I was faced with the realization that the consumer products on the shelf were utterly confusing. I had no idea what to choose between CFUs, strains, and the refrigerated section. So instead of picking up one probiotic, I grabbed tons off the shelf and began testing them in the lab.  My concerns were validated when the store-bought probiotics did not contain the strains listed on the bottle and failed to survive the gastric system. At that point, I custom formulated a probiotic for my son, alleviating his gut health issue. I realized that targeted probiotics were 8 times more specific and I could ensure they worked.

Sunny Jain
Sunny Jain

When did you decide to start a company, and where did your team get together?

SJ: I began the company by myself in 2016, but once I realized that I had an affordable solution for the world’s health issues, I began hiring key members of my team. We came together in a relatively auspicious way. For example, I connected with our bioinformatics hire, Thibaut Montagne, when he began following Sun Genomics’ Twitter Account.  We began building the team rapidly after Thibaut and all the pieces began to fall into place.

How does your technology work?

SJ: Sun Genomics uses next generation whole genome sequencing and a patented bioinformatics and data platform to process and analyze the DNA of its customers’ gut microbiome. We leverage existing data compiled by the Human Microbiome Project and American Gut Project and integrate that information into our existing technology. Our vast database of over 100,000 genomes allows our team of microbiome scientists to make calls related to not only bacterial strains but fungi, parasites, and viruses found in the gut microbiome, thereby allowing us to create custom probiotics for the end user.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

SJ: IndieBio and its team challenged us to think bigger and innovate quicker. In order for me to share my findings with the world, I was going to have to move from just being a laboratorian to a entrepreneur. During our four months at IndieBio we experienced more growth than over the previous 14 months as a company. We developed and filed additional intellectual property, grew our customer base by 1000%, and hired several key employees to assist us with our growth.

How do you think your success as a company would change the healthcare industry?

SJ: At Sun Genomics we believe, as did Hippocrates, that “All Disease Begins in the Gut.” Billions of people worldwide suffer from disease states and chronic conditions that both Eastern and Western medicine have been unable to diagnose and treat. We believe the gut microbiome holds the key to alleviating some of these conditions including; arthritis, Chron’s, lupus, diabetes, IBD, IBS, colitis, obesity, and perhaps even certain types of cancers. As a microbiome health company, our vision is to not find really expensive solutions for only a few, but affordable solutions for billions of people.

What milestones are you aiming to hit in the near future?

SJ: Sun Genomics is experiencing unprecedented customer growth and soon will announce additional partnerships, publications, and commercialization milestones. We are well on our way to analyzing 10,000 microbiome profiles and becoming a leading contributor to microbiome science. We have developed core technology that is beyond probiotics. Come hear about our newest innovation at IndieBio Demo day on April 17th.

Watch Sun Genomics pitch on IndieBio Demo Day, Tuesday April 17th in San Francisco or via LiveStream. Register here!

Neurocarrus: Treating Pain Without Addictive Opioids

Neurocarrus

Traditionally, people in pain are given Opioids—which, although they relieve pain, can have dangerous side effects such as loss of motor function, and addiction. Ocycontin, Vicodin, and other pain relievers are effective in subduing pain, but they are extremely addictive, which causes major problems in families and communities.

The Opioid Crisis is a reality we’re facing now—but what if pain could be treated another way? That’s exactly what Neurocarrus has been working on. Their new drug delivery technology safely disrupts pain signals without possessing addiction-forming qualities. We asked the company’s CEO, Benjamin Pavlik, more about how this works:

How did you become interested in biotech?

BP: After having reconstructive surgery on my knee in college, replacement of ligaments and anchoring with bio-diffusible and titanium screws allowed me to run again. It was an amazing success, but difficult. This experience changed my life in many ways, and I became interested in working on technology that would be useful for others experiencing similar procedures.

When did you decide to start a company, and where did your team get together?

BP:  My former PhD advisor and I decided to start a company at the University of Nebraska, Lincoln when we realized the incredible potential for this technology.

How does your technology work?

BP: Neurocarrus has developed an injectable non-opioid pain drug called N-001. N-001 is a novel protein that was synthesized to target key sensory neuron structures called actin. It is designed to disrupt peripheral pain signaling without affecting motor function or causing addiction.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

BP: Transitioning from science to entrepreneurship is challenging but rewarding. The communication skill set is different, and it takes time to learn and adjust. Once technical terms are replaced or simplified, sharing science with our greater society enables the research to reach a broader audience to learn and benefit.

How do you think your success as a company would change the healthcare industry?

BP: Our success as a company would change the healthcare industry by providing an alternative to opioids as a front-line pain management solution. This would give millions of Americans who live with pain a less difficult choice and in turn reduce substance abuse.

What milestones are you aiming to hit in the near future?

BP: We are aiming to test N-001 in an advanced animal pain model. A positive preclinical outcome would support clinical trials.

Watch Neurocarrus pitch on IndieBio Demo Day, Tuesday April 17th in San Francisco or via LiveStream. Register here!

JointechLabs: Point-of-Care Cell Therapy

JointechLabs

Stem cells have been a key source of innovation in regenerative medicine, because they possess the ability to self-renew. Adult stem cells are found within the human body, in bone marrow, tooth enamel, and other locations. When someone is injured, the inflammation from the injury acts as a signal for the stem cells to become activated. The stem cells heal the body by traveling to the affected location and changing into the cells that have been damaged.

This process doesn’t always work fast enough to heal all injuries, so stem cells can be manually harvested from areas where they are abundant, and transferred to areas in the body where they are needed. JointechLabs have created a device which makes this process more accessible and affordable for doctors and patients everywhere. We asked Nishit Pancholi, the President and Chief Medical Officer at JointechLabs, more about the company:

How did you become interested in biotech?

NP: We were always interested in the potential of harnessing the natural healing powers of the human body, and use that to enhance healing, and regeneration. It is painful to see near and dear ones continue to suffer from orthopedic problems or non-healing wounds after receiving conventional treatments. Improving science so that one’s own stem cells can be more accessible to help these patients heal became the founding mission of JointechLabs.

When did you decide to start a company, and where did your team get together?

NP: In 2010, Dr. Nathan Katz, who has extensive experience in stem cell biology, started JointechLabs with Felix Pustilnik, who has experience in business and sales. I have a background in medicine with a focus on clinical applications of stem cells, and I joined the executive team as a co-founder later.

How does your technology work?

NP: JointechLabs has created a device to provide stem cell therapies on demand, in a doctor’s office, for 1/10 of the price of conventional alternatives. Although stem cell therapies have been shown to have tremendous potential and efficacy in treating a variety of illnesses, they are currently underused, as the facilities and doctors that are capable of delivering them are few and far between. Stem cells are not easily transported, and so patients often must travel great distances in order to be treated; so inevitably the treatment is also incredibly expensive.

Our technology enables doctors to practice stem cell therapies and allows for development of stem cell therapies for medical indications with unmet medical need. Our device provides access to a high quality cell fraction at the point-of-care, therefore, a doctor can offer cell treatments in the regenerative medicine segment. Going further, our cell therapies will provide treatments for medical indications with unmet medical needs: orthopedic indications, wound healing, vascular indications.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

NP: Stay focused on what’s important for the company development and progress. Identify and clarify your product, development roadmap, regulatory aspects, market strategy and risks mitigation of all listed. Develop an understanding of the costs associated with each step. Prepare for prospective company growth: HR, legal, etc.

How do you think your success as a company would change the healthcare industry?

NP: Patients will receive access to effective treatments for indications with unmet medical needs. Since the condition will be treated in the early stage of development, the cost of indication life-cycle will be reduced dramatically, providing direct benefits to the insurance companies and, therefore, to the patients.

What milestones are you aiming to hit in the near future?

NP: FDA 510K approval for our medical device and brining the device to doctor’s offices. RMAT (Regenerative Medicine Advanced Therapies) FDA designation for our stem cell therapies.

Watch JointechLabs pitch on IndieBio Demo Day, Tuesday April 17th in San Francisco or via LiveStream. Register here!

Onconetics: Genomics-Informed Drug Design

Onconetics
Onconetics

Science is catching up with cancer. We are in a new era of personalized medicine for diagnosing and treating patients, now zooming in even closer, on an individual’s genome. By understanding the genetic causes of cancer, and measuring the differences between someone’s cells that are affected by cancer with the ones that are not, Onconetics can leverage the regulatory network of the cells and create a trigger for a kill gene that only activates within cancer cells. We asked Gabe Hitchcock, the company’s COO and co-founder, some questions about how this all works:

How did you become interested in biotech?

GH: Luke and I became interested in biotech through our own channels, him through his father at UCSF and me through my own undergraduate research in neuropharmacology. Though we had different beginnings, our journeys led us to the same question: how do we make better drugs for patients? Luke and I strongly believe that the key to better treatment lies in the patient’s own genes.

When did you decide to start a company, and where did your team get together?

GH: After months of deliberation, we started the company in the fall of 2016. For the first six months of the company, I was finishing up my B.S. at Oberlin College in Ohio, so I would fly out of Cleveland on weekends to meet Luke in San Francisco, Washington D..C, or New York as we built the company and our network.

How does your technology work?

GH: Our technology is predicated on the understanding that genetics determine the advent and progression of cancer. The hypothesis was simple: what if we could use these unique biomarkers not only to diagnose cancer, but also to guide the development of our drug? In essence, to create a drug that works only within the genetic environment of our choice. This is exactly what we have done at IndieBio: we have engineered a drug that selectively kills cancer cells without impacting healthy tissue. We call this approach Genomics-Informed Drug Design and we see it as the future of medicine.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

GH: Science is a highly iterative process. Ideally, one experiment tells you one thing that informs the next experiment… and on and on and on. When we first started out as entrepreneurs, we applied the same approach. We absorbed all the feedback we could in one go, went back to the lab and restructured, then did it again. However, the same perfectionist approach used in R&D does not always bear fruit in entrepreneurship. It’s easy to get lost in the details and caught in a cycle of endless restructuring. IndieBio helped us hone in on what really mattered: our story, our community, and getting out there. In a sentence, IndieBio helped us get out of the lab and into the Valley.

How do you think your success as a company would change the medical industry?

GH: There’s no point hiding it: what we’re doing is entirely new and disruptive. The success of our company will cause a fundamental shift in the way the medical community treats patients. We’re not screening a single molecule against 1,000 cell lines to see what sticks, nor are we tweaking a chemical a 1,000 different ways to best block a pathway. What we are doing is engineering a drug from the ground up to target cancer. In 15 years, Genomics-Informed Drug Design will be the standard of medical treatment.

What milestones are you aiming to hit in the near future?

GH: In the near term we are planning on transitioning into our own lab space in the Bay Area, making key hires, and moving our therapy closer to IND. Because we are taking a bioengineering approach to medicine, there is also a lot of optimization that needs to be done. This means long hours in the lab, but each new experiment brings us that much closer to the ultimate goal: an accessible, scalable cure for cancer.

Watch Onconetics pitch on IndieBio Demo Day, Tuesday, April 17th in San Francisco or via LiveStream. Register here!

Nivien Therapeutics: Cutting Through Cancer’s Shield

Nivien Therapeutics
Nivien Therapeutics

Cancer cells have defense mechanisms that can cause chemotherapy and other standard cancer treatments to become increasingly difficult for a patient to endure, as stronger drugs are often needed after the cancer cells adapt. Instead of killing cancer cells with stronger drugs, Nivien has a found a way to break down the defense mechanisms of cancer cells by first watching their response to drugs, and then designing small molecules that act against the specific defense mechanisms that the cancer cells are observed to be using. For this reason, Forbes recently called Nivien’s technology “The Trojan Horse of Cancer Treatment”. Nivien’s approach will allow existing drugs to become more effective. We asked the company’s co-founders, Nikita Shah and Nathaniel Brooks Horwitz, a few questions:

How did you become interested in biotech?

Nikita comes from a clinical perspective, preparing for medical school, working as an EMT, and shadowing oncologists. She also built a better preclinical model for testing small molecules (the same class of drug that Nivien is developing) in a biomedical research lab at Massachusetts General Hospital. Nathaniel worked in three biomedical research labs (Boston Children’s, Harvard Stem Cell Institute, Harvard Medical School) and at RA Capital, a biotech venture capital firm. We came together around a shared passion for translating important biomedical research into new medicines for patients.

When did you decide to start a company, and where did your team get together?

We began Nivien under the mentorship of Dr. Derrick Rossi, the scientific founder of Moderna. We decided to start the company when key academic discoveries converged around the importance of our target in cancer resistance. After raising initial venture funding, we recruited Dr. Ken Fang, a principal scientist from Allergan, and Dr. Dharmendra Singh, a veteran cancer biologist from UCLA, Houston Methodist and the NIH.

How does your technology work?

Rather than directly killing cancer cells, Nivien targets the shields that protect cancer from existing treatments. Nivien develops small molecules that inactivate the first upstream regulator of many proteins responsible for the failure of dozens of FDA-approved cancer treatments. We will combine Nivien molecules with existing drugs to create a better reformulated product that has higher effectiveness and lower side effects than current options.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

We learned that science moves much faster at companies than in academia. We also learned to focus on doing “the killer experiment” at each step to prove or disprove a theory as quickly as possible, rather than spending time and money on auxiliary experiments that provide support but not clear answers.

How do you think your success as a company would change the medical industry?

Our mission is to dramatically improve the standard-of-care in cancer therapeutics.

What milestones are you aiming to hit in the near future?

We are filing key patents, establishing partnerships and hiring new team members to fill critical roles moving forward.

Watch Nivien Therapeutics pitch on IndieBio Demo Day, Tuesday, April 17th in San Francisco or via LiveStream. Register here!

Photo credit: IndieBio

Antibiotic Adjuvant: Transforming Antibiotic Use from Chaos into a Coordinated Campaign

Although doctors mean well by prescribing antibiotics, we can’t ignore the fact that antibiotic resistance as an effect of overuse has become an overwhelming problem in the healthcare industry and elsewhere. The situation can appear hopeless to some, but the team at Antibiotic Adjuvant sees it as a challenge they are willing to accept. They have developed software that works with the doctor at point-of-decision, along with the patient’s specific information and information about the facility itself, transforming antibiotic use from chaos into a coordinated, conscious campaign. Using the correct methods, antibiotic resistance therefore becomes preventable. We asked David Flores, the co-founder and CEO of Antibiotic Adjuvant, and Dr. Robert Yancey Jr, the company’s co-founder and Medical Director, to tell us more about their motivation and how it all works:

How did you become interested in healthcare?

DF: When I was a little boy, I wanted to be just like my father, a doctor. However, after being in the O.R. couple of times, I decided to study something else. The bug never seemed to fade on me though. While having another business, I found myself talking to doctors and doing apps in the healthcare space. After learning about this problem from Bob, our Medical Director, I just couldn’t believe how crazy it is that antibiotic resistance is growing so rampantly, and that no one seems able to control it—even though it is preventable!

RY: I have wanted to be a doctor since I was eight years old. It is a gift and a privilege to practice medicine. Infectious Diseases is by far the most interesting sub-specialty in medicine.  It is a little like being Sherlock Holmes. Seeing patients in the hospital getting substandard antibiotics so frequently made me think that there has to be a better way, and as a consequence, I have been working in the field of Antibiotic Stewardship for over 20 years.

When did you decide to start a company, and where did your team get together?

DF: Preventing the increase in antibiotic resistance is a very compelling problem that can be prevented by applying new technologies to existing systems. After doing couple of prototypes and getting good feedback from doctors and nurses, we decided it was time to tackle this problem. We started working in Gainesville, FL and relocated to San Francisco to improve our chances of making this idea a reality while doing IndieBio.

RY: I have been kicking this idea of how to codify algorithms for improved and coordinated antibiotic use for many years, after it became obvious that current methods of Antibiotic Stewardship were inadequate.

How does your technology work?

DF: We have created a software that reduces the time it takes a doctor to prescribe antibiotics, improves communications between pharmacists, doctors, and nurses; saves the hospital millions of dollars in unneeded procedures and loss of funding, and improves patient outcomes. We can do this by improving the way antibiotic stewardship programs are implemented in a health center. Our software uses input from the electronic medical records, lab reports, and other reports to provide personalized antibiotic recommendations for a particular patient and facility. We take into account the health center’s microbiome and create a coordinated antibiotic campaign to prevent antibiotic resistance from occurring in the first place. Since we are with the doctor at point-of-decision, we can affect virtually every patient in the facility and provide true comprehensive antibiotic stewardship.

RY: The basic premise is that given sufficient, easy to understand information, the busy physician will do the correct thing, especially if it is fast. In addition, modern analytics can help even the most knowledgeable physician make better decisions. The fields of Quality Assurance and Infection Prevention are enhanced by identifying and predicting all adverse events and infections in the facility, not just those with a positive culture, and their predisposing factors.  Administration can identify methods to reduce costs that were not visible before. Patients have better outcomes. Win-Win!

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

DF: The main difference I see between science and entrepreneurship is the market forces. In the market, you have to take into account the feasibility of the science but also the costs to create the product. The profit margins have to be healthy, and your customers must want to use your product. The market will reward companies that take these three pieces into account when commercializing a technology/idea.

RY: Saving lives and costs is a great product, but we have to demonstrate that we can execute. IndieBio has helped us execute in so many ways. They have pushed us to be the best we can be, not just an idea.

How do you think your success as a company would change the medical industry?

DF: We will fundamentally change the way antibiotic prescriptions are made in the world. In the future, people will be able to go to the hospital and not acquire an infection while receiving treatment because health centers will not have rampant antibiotic resistance as they do today.

RY: We will transform antibiotic use from chaos to a coordinated conscious campaign to minimize resistance and complications. More intelligent antibiotic use means a safer, more effective, less costly healthcare system.

What milestones are you aiming to hit in the near future?

DF: We are aiming to arm skilled nursing facilities with tools to improve their antibiotic stewardship programs and then start doing a pilot in hospitals.

RY: Out first installation into a skilled nursing facility is underway, and we will reach at least 100 more facilities within 10 months. CMS requirements for Antibiotic Stewardship and Infection Control will drive our sales. Testing in acute care hospitals will begin in early 2019 with demonstration of financial and patient safety benefits within months after that. At that point, AA will add physicians’ offices to the campaign to monitor and control resistance in entire communities. It’s a big goal, but doable according to the CDC.

Watch Antibiotic Adjuvant pitch on IndieBio Demo Day, Tuesday, April 17th in San Francisco or via LiveStream. Register here!

Stelvio Oncology: Live Imaging For a Paradigm Shift in Drug Screening

Stelvio
Stelvio

It’s been clear for some time that a personalized approach to cancer treatment is key in overcoming the disease. Since certain types of cancer, like glioblastoma (brain tumors), have been found to be resistant to chemotherapy, new (and less toxic) approaches are desperately needed to combat the resistant cells. Stelvio is a company with a unique approach to identifying the resistance mechanisms of cancer cells, and overcoming them with targeted therapies for the individual patient. The company’s founder and CEO, Attila Hajdu, explains more:

When did you decide to start a company, and where did your team get together?

AH: We decided to start Stelvio Oncology in May 2017. While we are a relatively new company, we have had a number of major accomplishments which include an invitation to join JLABS San Diego, which is Johnson & Johnson’s innovation centre, where we will be based starting on September 26, 2017. Being a JLABS company exposes us to the ecosystem of J&J’s innovation centre and potential collaborations with the incubator companies as well as J&J. We are also in the middle of an evaluation process with Sanofi to utilize our technology to identify novel targets and molecules in Huntington’s Disease, which opens the door to the formation of Stelvio Therapeutics. We’ll begin the evolution to this new name over the next few weeks.

What problem are you aiming to solve with Stelvio Oncology?

AH: The main problem in cancer remains resistance to chemotherapy based regimens which leads to loss of response to treatment and no viable options for patients afterwards. Not only is chemotherapy based treatment ineffective in cancers like glioblastoma, breast, and lung, but it is also highly toxic. So we are addressing the problem that there is no cure for cancer and ineffective/toxic treatments are still used which give incremental benefit.

The problem we are solving with our work in neurodegenerative diseases is current treatments are ineffective in Huntington’s Disease, which is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and dementia.

How does your technology work?

AH: Our technology works by labelling histones within the nucleus which gives each cell an epigenetic fingerprint akin to a bar code, and then we can visualize the changes small molecules or drugs have on the cells using live imaging. This is a paradigm shift in drug screening for disease because it represents a 100 fold improvement in the precision of high throughput screening of proprietary drug libraries.

How did you become interested in biotech?

AH: I became interested in biotech after spending 20 years in big pharma mainly with GSK. I had a strong drive to become a catalyst for change, to solve problems that have a positive impact on people, that could improve their lives for the better.

What lessons did you learn transitioning from science to entrepreneurship at IndieBio?

AH: There were many lessons learned at IndieBio. One main lesson is that clarity creates confidence which was Arvind’s saying over the course of the program. One of the biggest challenges for us has been to explain what we do in a simple manner so that investors could understand and more importantly, write us a check! We’ve learned to communicate more effectively with investors in a simple and meaningful way.

How do you think your success as a company would change the medical industry?

AH: Success for Stelvio would mean ripping cancer out of the pages of medical history books within our lifetime. The same applies to neurodegenerative diseases although this success may not happen within our lifetime!

What are the milestones you’re looking to hit in the near future?

AH: Key milestones are demonstrating that we are stopping tumor growth in vitro and in vivo, screening Johnson & Johnson’s proprietary libraries while housed within JLABS to discover hits which we could further develop into lead candidates, screening Sanofi’s proprietary drug libraries against Huntington’s Disease and potentially other targets such as Multiple Sclerosis, Alzheimer’s, and Parkinson’s Disease, and importantly, closing a seed capital raise of $4 million to fund these milestones.

See Stelvio pitch at IndieBio Demo Day on September 14th in San Francisco or via Livestream! Register here.

Pictured above: Stelvio CEO Attila Hajdu (left) and CSO Alexey V. Terskikh.

DNALite: A New Age of Medicine Is Emerging

DNALite

What if instead of undergoing life-altering chemotherapy or surgery, a patient could take a daily pill to fight cancer? That’s the ultimate vision of DNALite, a new biotech company that wants to actually prevent instead of manage symptoms. Their technology aims to deliver genetic cargo to areas of the body that are hard to reach, giving them the properties they need to kill of the cancerous cells and empower healthy ones. The company’s co-founder Timothy Day explained more:

What problem are you aiming to solve with your company, DNALite?

TD: We are treating diseases for patients that currently have very few treatment options. We are a gene therapy company, and by delivering the correct genes to the necessary cells in the body, we are able to treat the cause of the disease—not just the symptoms. We are focused on tissues that are protected by mucus barriers, like the gastrointestinal tract, lungs, and cervix. The mucus is a necessary protective barrier for these tissues, but it also makes drug delivery a challenge. We are able to overcome this challenge with our technology and are focused on first treating a genetic disease that leads to a 100% chance of colon cancer by age 40.

When did you decide to start a company, and where did your team get together?

TD: We met as students in early 2016 at UC Berkeley. Mubhij had the idea of doing gene therapy for this particular form of colon cancer, and I was working a PhD thesis focused on overcoming physical barriers for gene delivery. We both share the core belief that a new age of medicine is emerging that we want to be part of, and if we have an idea that can help a large number of people we have an obligation to try out that idea. So, we started working on the company on nights, weekends, and in between classes, and haven’t looked back since.

How does your technology work?

TD: We both have virology backgrounds and were inspired by the properties that let viruses penetrate through mucus and deliver genetic cargo to cells. We translated these properties to a non-viral gene delivery system that allows for the delivery of genes to cells protected by mucus for the first time. For our first target indication, the gene that is delivered restores normal tumor suppressor function in cells. For the cells that are already cancerous in this disease, it leads to the cells being killed off or lost, and a regression of the tumors. For cells that are still healthy, it empowers them to suppress cancer mutations and prevents them from becoming cancerous in the future. The vision for this treatment is that instead of these patients undergoing life-altering major surgery and/or chemotherapy, they can just take a daily pill that restores the body’s normal ability to fight cancer.

How did you become interested in biotech?

TD: The appealing thing about biotech is that it is by necessity an applied science, so we are able to take the brilliant biology and chemistry research that has been performed to-date and channel it into something tangible that can change patients’ lives. We also get the privilege to work with top scientists, physicians, and business people to make brand new treatments that treat the cause of the disease and not the symptoms.

What was it like transitioning from science to entrepreneurship?

TD: When starting a new company each person has to wear many hats. Learning to balance all the necessary tasks simultaneously in addition to doing good science is a skillset that has to be learned. As scientists, we tend to carve systematic stories that are only read by a few people in the field, but as entrepreneurs we have realized the importance of selling the vision behind the science.

How do you think your success as a company would change the medical industry?

TD: Many patients with genetic diseases have zero therapeutic options and are either told by doctors that there is nothing that can be done for them or that they have to go through devastating medical procedures that only treat the symptoms of the disease or simply serve to control inflammation. We are actually targeting the cause of the disease and not just the symptoms. This provides medical a new option to patients that is safe, therapeutic and preventative.

What are the milestones you’re looking to hit in the near future?

We have demonstrated efficacy for our first indication in a rat model of the disease. This was one of the first gene therapy attempts for this disease. We are in the process of using that data to optimize our modular system to reach an efficacy endpoint that provides patients with the most meaningful clinical outcome.

See DNALIte pitch at IndieBio Demo Day on September 14th in San Francisco or via Livestream! Register here.

Pictured above: DNALite co-founders Timothy Day (left) and Mubhij Ahmad.

Sugarlogix: Prebiotic Sugar for Your Gut Health

What if sugar was good for you? The consumption of excess sugar has led to health issues in humans, such as autoimmune diseases and IBD, that begin in the gut. Sugarlogix has found a way to create prebiotic sugars to fix this problem and make sugar that’s actually healthy for people to consume. Although there are plenty of probiotic solutions that add good bacteria to the gut, Sugarlogix’s prebiotic sugar is the missing link in actually nourishing those good bacteria. The company’s co-founder and CTO, Chaeyoung Shin, explained more:

Where did everyone on your team first meet?

CS: I’m from UC Berkeley, and that’s where our team got together. We were originally part of a large project funded by British Petroleum to make biofuels out of fermentation. Our co-founding team consists of two professors and two PhD graduate students including myself. After that project, we realized that, “Hey, we could use this technology to make something of higher value.” That’s when we decided to build a company.

So you started with biofuels, and now you’re focusing on sugars?

CS: Yes, but not just any sugar. Prebiotic sugars. These sugars naturally exist in human breastmilk, however they’re not really accounted for anywhere in the market right now. They are starting to make some products that look like it, but not much, because it is very expensive to recreate it outside of a human body. We have the technology to do that in a cost-effective and food-safe way. We brew the prebiotic sugars by using yeast fermentation. It’s just the bakery yeast that we normally use.

How did you become interested in science and biotech?

CS: That goes back a long way. I actually chose to be in the biofuels project during my PhD because I knew we had no way of going around biotechnology. Right now the current industry consists of a lot of chemical-based industries, but we know that these won’t last forever, and also they’re not environmentally friendly. Now in biology, the coolest things happen. Just look at our bodies, it’s amazing what biology can obtain. Improving our knowledge of biotechnology would enable us to mimic biology and use it to our benefit. So that’s how I became interested in that area and I decided to focus my PhD project on it.

Why is Sugarlogix’s technology needed right now, and what problem is it solving?

CS: We know that our current way of living is not the healthiest kind with conventional sugars. We’re exposed to a lot of fatty foods, and that’s why so many people experience gut discomfort. There’s been a huge increase in gut-related diseases, including irritable bowel syndrome and autoimmune diseases which are known to have direct relationships to gut health. One way to prevent that is to provide these types of prebiotics to the gut. In relationship to probiotics (the probiotics are the good gut bacteria), the probiotics are food for the good gut bacteria. Only by having those two components can the good gut bacteria really thrive in your gut. There are probiotic solutions out there, but not the prebiotic part. And by providing the other half, we would really be able to affect people’s gut health in a good way.

What would be the single biggest indicator that your company is succeeding?

CS: Thankfully a lot of people have done research on prebiotic sugars that exist in human breastmilk. It has been long been known as the holy grail of an infant formula ingredient. As long as new research doesn’t come out that proves otherwise, we have solid proof that our technology will benefit people’s gut health. In the long run, an indicator that we’re successful would be the fact that we’re making a lot of profit by selling these prebiotic sugars. The question is different in terms of a short term goal. We want to do a demonstration of a larger size than where we’re currently at. We are hoping to move up to a larger size fermenter to prove to our investors and customers that we can indeed manufacture this on a large scale.

What big lessons have you learned transitioning from science to entrepreneurship at IndieBio?

CS: I never envisioned myself going through this type of transition. I thought I was just going to be scientist. But now my role has dramatically changed, where I’m actively seeking out customers, and actively reaching out to suppliers and investors. For me personally, talking to investors and recruiting them is the toughest part about all this, because you have to sell yourself as well as the company, and it’s something I’m still getting comfortable with. At IndieBio, it’s been really fun to see all the gears of the company come together along with my partner Kulika Chomvong, who is running all the gears.

See Sugarlogix pitch at IndieBio Demo Day on September 14th in San Francisco or via Livestream! Register here.

Photo credit: Or Weizman

Quantumcyte: Cancer Just Got Personal

“I never intended on even giving a crap about cancer. It just happened,” said John Butler. “This isn’t a matter of me wanting to build a business, it’s a matter of wanting to help my wife.”

John quit his job to pursue a better cancer outcome and become co-founder and CEO of Quantumcyte. Together with Quantumcyte’s co-founder and CTO, Dr. Bidhan Chaudhuri, the company aims to look a patient’s cancer at a cellular level in order to match them with the best drugs for their recovery. The two founders explained more:

What’s your company’s background, and what do you do at Quantumcyte?

JB: Bidhan and I are developing a platform technology for doing cancer research. What makes us different from the rest of the world is we are really able to understand an individual’s cancer in order to find them the best drugs to cure it. Our platform is really designed around enabling researchers to better understand a patient’s cancer on an individual level.

So your platform figures out which cancer drugs are best for the individual, since cancer varies so much from person to person. How does it work?

JB: Yes, that’s the goal. To go into scientific detail about what we do that nobody else does…is we take a tumor, and we slice it up and take a microtome section. We put that section onto a slide, and look at it with a microscope and say, “Ok, that’s a T cell, that’s a cancer cell, that’s a stromal cell.” Then we can build a 3-dimensional model of the cells, and also extract the genetic information, the RNA, out of those cells and sequence them. With the 3-dimensional model, we can understand what cells are where in the tumor, and what cells they’re next to. If you can do that, you can really understand what’s going on inside that tumor. If you understand that on a patient level, now you can start looking at the right drugs to shrink that tumor and get rid of it. The way I describe it to people is, we’re really looking at cancer on a personalized level, and we’re trying to find best drugs for the individual.

And will these drugs be developed by someone else?

JB: Yes. So you know the situation with my wife, she was diagnosed with cancer, but now she’s actually doing quite well. The idea we came up with is, we’re going to grab her cancer cells alive, and throw some existing drugs at them and see which ones will work. When you look at the body of literature about cancer, I think there are enough drugs out there that can potentially help any cancer. We could easily partner with other companies who are doing drug discovery, including companies at IndieBio.

Where did you two get together to start working on this?

JB: Prior to Quantumcyte, I worked at a company called Pacific Bioscience, and that’s where we met. I was hired as the manager of manufacturing, and Bidhan was the manager of engineering. We were responsible for taking products from research and moving them through development into manufacturing.

I’m not an oncologist, and Bidhan’s not an oncologist, but we work with them. When we started working on this we said, “We’re not going to learn cancer biology, we’re going to go find the best in the world and work with them.” And that’s what we’re doing.

Since you started at IndieBio, was it challenging transitioning from science to entrepreneurship?

JB: Yeah, just a little. I think Bidhan and I have always been very aggressive in pursuing our efforts. Really understanding how to focus and defocus constantly is something that is required as an entrepreneur. I think something that I’m getting better at understanding is what it means to be in the C-suite: How to be a CEO, how to communicate less like a scientist and more like a non-scientist.

What’s the most challenging thing about building a business?

BC: It’s building a business, that’s the most challenging thing! I come from a big technology background. I can build machines. John is pretty good at the biology side of things. We put it together and say, this is technologically cool. That’s why we started this, because we thought we could solve a problem. But actually going out there and figuring out if there’s a market for it, and figuring out how to translate our vision to other people—people who will be using our tool or even investors—that’s challenging.

We have to tell people about what we believe is happening. We’re at the leading edge of a cancer technology that’s only now starting to come alive, and John has had the difficult task of gathering opinions of key people about it. John has done a fantastic job, but we did spend most of the past couple of years trying to convince people that this is worth something. And that was hard. For us, once we built the technology, we thought, “We’re there.” But really, we had to learn to convince people to believe in our technology as well.

JB: I think the most important thing is establishing relationships. It’s all about relationships, including relationships with investors. Understanding that you need to do that is something that was difficult for us. It took us a while to realize it’s more about building relationships and establishing trust than building a business.

Prior to this, Bidhan comes from the semiconductor industry, and there was an 18-month lead time to build a chip to get into manufacturing. It was pretty straightforward. When you’re talking about what we’re trying to do, at first we didn’t even know we were on the bleeding edge. We just said logically this makes sense. Later on we found out we were one of the very few people in the world thinking about this problem in this way. We let it sit and incubate for a while, and next thing you know we’re having discussions with Ryan Bethencourt about how to sell something we don’t even have, and then actually selling it. The hardest part is realizing it’s about relationships, and it takes a long freaking time.

How do you think your success as a company would change the cancer industry?

BC: As a person who’s outside of the cancer research field, here’s the way I look at it: Cancer started out as a disease that required a person to have surgeries. From there the treatment included chemotherapy. Now cancer therapy has reached a point where people are beginning to understand cancer at a patient level, a cellular level, but still they do not have the tools at hand to do much good about it. What our technology does is it brings all that capability to be very accessible to researchers. And I think this will allow for progress beyond what’s currently achievable today, at a level where it needs to be, a patient level.

JB: One way to think about it is drugs for all cancer patients.

What are the milestones that you’re looking to hit in the near future?

JB: Scientifically, we need to demonstrate that we can use our tool for what it’s designed to do. We need to show that we can take patient cells and look at the cell type, the phenotype, extract the genetic information, and then correlate that genetic information to that phenotype. On the business side, the milestones are to engage with some more thought leaders in the space, and to fund our efforts so that we can really pursue what we want to do with the company. Once we demonstrate that our tool can do what it’s designed to do, everything will fall in line.

See Quantumcyte pitch at IndieBio Demo Day on September 14th in San Francisco or via Livestream! Register here.

An Interview with John Mendelson of DxRx

“Rehab on Your Phone”

dxrx medical

Photo: John Mendelson (center) and the DxRx team.

Not everyone who occasionally overdrinks is seen as an alcoholic in need of help. DxRx is a service for people who want to manage their alcohol consumption using an app, a breathalyzer, and medication if needed. DxRx wants to break the stigma of alcoholism and make treatment obtainable for people who can’t deal with traditional rehab or Alcoholics Anonymous, in terms of financial and social cost. We asked one of the company’s founders, John Mendelson, a few questions:

Tell me about your background, how did you become interested in public health?

My father was one of the first scientists to study alcoholism. His enthusiasm led to my interest in alcohol, opiate, and stimulant addiction, which blossomed into a career in clinical research for addiction treatments. Besides conducting research, I also treat patients. I have been in practice for 30 years and have had the extraordinarily good fortune to watch addictive diseases go from untreatable severe diseases often ending in death to manageable problems.

What problem are you working to solve with DxRx?

If you ask the average American to list the most deadly diseases, alcoholism doesn’t make the cut. Yet alcoholism is a devastating disease that destroys lives and kills more people then diabetes. Despite the toll of alcoholism, most people have no idea what makes a person an alcoholic, how to identify early problem drinking, or treat the disease. Part of the problem is that alcoholism is often viewed through binary lens – you are either a flawed person or the inevitable victim of a purely biological disease. In fact, like most important problems in life, voluntary choices combined with biologic vulnerabilities lead to the eventual disease state. Both my approach and DxRx’s philosophy is to provide tools to enable better choices of when and how much to drink, while also addressing underlying biological motivators of behavior.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

Of all the progress we have made over the past four months at IndieBio, there is one thing that convinces me we are on the right path. Our customers use a breathalyzer every day to measure their blood alcohol content so they can track their progress. When we average the results from the first dozen patients, the results are astonishing. The average patient at DxRxMedical is able to cut their drinking in half in a month.

How do you think success can change your industry?

At present there is no cure for alcohol addiction so treatment needs to be one day at a time. Our light, daily, empowering touches support patients for the long haul. 34 million Americans are estimated to have Alcohol Use Disorder yet only 2.5 million get treatment and only when the disease has done much of its destruction. The costs are enormous with an estimated $16 billion being spent to treating this small proportion of people in need. Success means 34 million people with AUD can get help and prevent hitting rock bottom.

How is your team uniquely able to tackle this? What’s the expertise?

Our team is successful, experienced and creative. I am a practicing physician and NIH-funded researcher with 30 years of experience treating patients and developing treatments for addiction. David Deacon, our CEO, has launched four companies of his own and helped found 20 others. Bob Nix, our CEO, has been a software architect at Athena Health for the last nine years and has been VP of engineering for nine start-ups.

Our Scientific Advisors are all leaders in addiction science. Chuck O’Brien developed naltrexone for addiction and is the leading academic physician in addiction. Ivan Diamond founded the UCSF Gallo Center, edits Alcohol Clinical and Experimental Research and is the leading academic expert in the biology of alcoholism. Warren Bickel is a Psychologist whose works pairs psychological interventions with technology. 

Any big lessons learned transitioning to startup entrepreneurship?

To be concise! I try!

What’s the biggest challenge you’ve encountered so far?

There is a lot of stigma associated with addiction, which fuels denial, and deconstructing this stigma and empowering our patients to take charge has been a big challenge we are quickly learning to overcome. 

What are the big goals and milestones you’re looking to hit in the short term? Long term?

Over the last month we have enrolled our first group of patients and have launched demonstration projects with key stakeholders in medicine including a Yale-associated hospital, researchers at the NIAAA, and the largest hospital chain in California – Dignity Health. The team at DxRxMedical is now rolling out our solution to everyone in California, starting with employees at a few key companies, and hospitals that need a solution for their patients. If we are successful in California, we will scale up by hiring physicians across the country to deliver addiction treatment in every state. 

An Interview With Daniel Dempsey of Venomyx Therapeutics

Venomyx

Just like an Epi-Pen for Snake Bites.

Venomyx

Photo: Deepankar Roy (left), Daniel Dempsey, and Alexio Capovilla of Venomyx Therapeutics.

Snake bites are one of humanity’s oldest medical problems, but they’re definitely not a thing of the past—millions of people are bitten by poisonous snakes every year, and if they are lucky, those people are able to get medical attention quickly enough to not lose life or limb. The process of producing antivenom is outdated—it usually consists of injecting a horse or sheep with poisonous venom and harvesting the antibodies that the animal creates. Venomyx is using biotechnology to eliminate the use of animals from the process of producing antivenom, along with making it available in a portable, easy-to-use injector that makes it seem like the Epi-Pen for Snake Bites. We asked the company’s CEO, Daniel Dempsey, a few questions:

Tell me about your background, how did you get interested in the biotech space?

As cliche as it sounds, I got into biotech to make a difference in the world—specifically to make a difference in the lives of people. I went to school at UC San Diego and studied human biology as an undergrad and then autoimmune disease for my M.S. during grad school, I seized the opportunity to research infectious disease in the Costa Rican rainforest for a summer. It was there (surrounded by snakes) that I became familiar with the problems surrounding conventional antivenom and envisioned what modern biotech research could bring to this space. I returned to San Diego to work for big pharma developing drugs against cancer and inflammatory diseases. I couldn’t shake the feeling that something should be done for people that currently don’t have access to safe and effective antivenom so I studied it in my spare time. I finally decided that we were on to something that should be given a chance and quit my job, forming Venomyx in 2015.

What problem are you working to solve with your company, Venomyx?

We are working to make the world’s first recombinant antivenom that offers broad-spectrum treatment for bites from all medically relevant species of snakes.

Every year 5.5 Million people are bitten by venomous snakes. For the victims of snakebite, this results in disfigurement, disability, or death. Conventional antivenom has been able to approximate treatment of snakebite but is associated with limited efficacy, side effects, and a difficult production process.

Our antivenom is showing early preclinical success as a universal treatment for snakebite. It is a recombinant product which is manufactured at scale using microbial fermentation. The stability of our antivenom means that it does not require cold chain and will be available in the field for the first time ever.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

The entrepreneurial path is not an easy onebut I think that’s why we chose it. At some point, if it seems you have the ability to do something important, it becomes almost a responsibility to act. We’ve definitely received raised eyebrows from people in the past for what we are attempting to do; but we have also received support and encouragement from prominent opinion leaders of our space and that is the most validating of all. There have been many great minds who have dedicated their lives to studying snakes and their venom, so we hope to validate them by getting our solution to market and saving lives with it.

How do you think success can change your industry?

Our product will transform a very old industry that still relies on milking snakes and immunizing horses with the venom. We plan to manufacture our product overseas or license to overseas pharmaceutical companies who are already showing willingness to change. This will lead to a shift in local jobs from animal handling to biomanufacturing and, of course, spare great numbers of snakes and horses as a result.

How is your team uniquely able to tackle this? What’s the expertise?

Dan Dempsey
Deepankar Roy, PhD
Alexio Capovilla, PhD

We each have experience in both research and business as it pertains to drug development. This strong base is then differentiated further where each of us is able to lend unique perspective in the areas of R&D, project management, business development, regulatory compliance, and commercialization. Our complementarity skills help tremendously with the decision making process of an early therapeutics company where important decisions are made daily.

Any big lessons learned transitioning to startup entrepreneurship?

Don’t sweat the small stuffjust keep moving forward. There are so many challenges encountered as a start up and not everything goes as planned. It’s important to stay diligent and stay on your path. I’ve looked back at some of the early setbacks we’ve had as a company and noticed that it’s par for the course and we’re always able to find a way through.

What’s the biggest challenge you’ve encountered so far?

I think there is an inherent challenge associated with operating in our space which is part of the reason there still isn’t a viable solution. Snake venom is a complex drug target and requires the same scientific diligence that you would employ with any other disease indication. Traditionally, pharma companies and investors have been hesitant to venture into a space that falls outside the more widely accepted investment areas. I think we are changing that. They are beginning to see the cost and regulatory advantages of our space and that it opens the doors for our future projects in bacterial antitoxins to combat antibiotic resistant strains which is a huge and growing market.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

We are already showing neutralization of venom from multiple species of snake and plan to finish preclinical development and enter the clinic for Vipax Asia at the end of 2017. The acute nature of our trials combined with our qualification for fast track status means we can complete clinical trials and gain approval as early as Dec 2019. Once our clinical trials are underway we plan to shift focus to development of Vipax for our other three regions (U.S., Africa, South America) as well as our bacterial antitoxin programs.

Learn more about Venomyx by watching Daniel pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!

An Interview With Brendan Griffen of Scaled Biolabs

Scaled Biolabs

A Biomedical Lab the Size of Your Phone.

Scaled Biolabs

Photo: The Scaled Biolabs team – Brendan Griffen (left), Justin Cooper-White, and Drew Titmarsh.

Biological experiments are time-consuming, and space-consuming, while requiring repeated manual motions from lab technicians. But technology has allowed Scaled Biolabs to shrink down the entire system of experimentation down to the size of your phone. Using microfluidics, scientists can conduct thousands of individual tests in one fell swoop and accelerate the rate of discoveries. We talked to the company’s CTO, Brendan Griffen, a few questions about how this all came to be:

Tell me about your background, how did you become interested in biotech?

My academic background is in computational physics with an specialization in astrophysics, theoretical physics, and cosmology. I’ve spent the last ten years working on large projects trying to understand the origin of our universe, the evolution of stars, and galaxies.  From these experiences, I’ve seen first hand the power of a supercomputer in solving some of the most complex problems in the world. This is fundamentally because we’ve been able to control the flow of electrons through circuits at increasingly smaller scales. Biology is similar in many ways but instead of mixing and moving electrons from point A to point B, we’re moving fluids. This is the fundamental way biomedical research is currently done so it always perplexed me as to why we continue to use clunky equipment to interface the human scale with what we’re actually interested in (e.g. cells interacting). This is what excited me about the future of biotechnology, our ability to do biology at nature’s scale. The potential to miniaturize most of biological research means that in the next 50 years, we will likely transform our lives even more dramatically than what computers have done in the past 50 years.

I’ve always been interested in biotechnology but never had the opportunity to apply myself to developing these ideas. When I saw the technology my co-founders Drew Titmarsh and Justin Cooper-White had developed, I immediately understood that a microfluidic approach to experimental biology is exactly what’s needed to make the aforementioned future a reality. In order to be part of this exciting future, we formed our company Scaled Biolabs.

What problem are you working to solve with Scaled Biolabs?

We are accelerating discoveries in biology. We’ve taken the functionality of a modern biomedical R&D lab and shrunk it all down on a system the size of your phone. By shrinking things down we rely on less expensive materials, less highly trained manual labor, and most importantly we can execute numbers of experiments on an unprecedented scale. We can run nearly 10,000 experiments on a single system and additionally resolve every single cell in every one of those experiments. Why is this important? If a biologist can run down every single possible path in a maze of possibilities faster, then they can find the optimal solution which gets them to their desired outcome sooner rather than later.

Stem cells are one such maze and a very active area of research right now — how do we turn stem cells, the ‘blueprint cell’, into different parts of the human body? Our collaborators have already grown human kidney and beating heart tissue in our system because they found the optimal method for getting to those outcomes faster than traditional methods. At Scaled Biolabs, we enable these kinds of breakthroughs by allowing scientists to get more done, cheaper and sooner.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

All discussions of “what has value?” tend to link back to a basic notion of health and wellbeing. I personally believe that our team really does have the potential to deliver fundamental improvements to human health. Take just one example — in 2005, 65 million people died from kidney disease. Being able to regenerate a patient’s kidney from their own stem cells, which won’t be rejected by their immune system, will literally save lives. If we had to boil it down to a single reason for doing all of this then it’s that — accelerating the advent of regenerative medicine to meet the needs of millions of patients who can’t be helped by a pharmaceutical drug.

How do you think success can change your industry?

Apart from meeting patient’s needs, success to us is creating a new status quo in our industry. Biological research is in desperate need of an upgrade, and should our approach be successful, we would be enamored to see it more widely used. We don’t want to stop just there though. Unknown problems on the horizon will require solutions not yet invented, and so being successful will mean not just creating a new status quo, but also continually creating novel technological solutions.

How is your team uniquely able to tackle this? What’s the expertise?

We’ve got complementary talent trained around the world.

Our CEO, Drew Titmarsh, is a trained chemical and biological engineer and co-inventor of the microbioreactor technology which is the workhorse platform of Scaled Biolabs. He has coordinated multidisciplinary projects at the Australian Institute for Bioengineering and Nanotechnogy (Brisbane, Australia), and the Institute for Medical Biology, A*STAR (Singapore) in the areas of tissue engineering and regenerative medicine.

Our CSO Professor Justin Cooper-White is a global leader in tissue engineering and microfluidics, and co-inventor of our microbioreactor technology. With 20 years of expertise in running and funding large research programs, he currently holds the positions of Professor of Bioengineering in the Australian Institute of Bioengineering & Nanotechnology and the School of Chemical Engineering at the University of Queensland, Director of the Australian National Fabrication Facility-Queensland Node, and Office of the Chief Executive Science Leader within CSIRO, Australia’s federal research institution.

I’m the CTO and have ten years in computational physics employing a wide variety of hardware and software tools to create solutions to big data problems. My previous four years research as a postdoctoral fellow at MIT has provided me with a wide range of interdisciplinary skills which are well suited to our challenges ahead.

Any big lessons learned transitioning to startup entrepreneurship?

It’s been quite a dramatic transition. The following three areas are where we’ve found the biggest lessons:

  1. Being OK with moving more quickly than you’re comfortable with. Academia tends to have a perfection focused mindset because the operational timescales are much longer. In industry, things are measured in days. The closest analogy I’ve found is it’s like morphing from a mammal into an insect — your priorities certainly change!
  2. As the phrase goes, “it’s not what you know, it’s who who you know”. Academia tends to (in the ideal case) be more of a meritocracy where what you know really does give you the greatest return. In industry, having strong relationships with people you can lean on for help or to stage a warm introduction often converts into something of great value.
  3. Follow up. No one cares about your business more than you, so you really have to make that extra effort to follow up with people if an email or call thread goes cold. Even if there is not a quid pro quo to be had on the business side, it is always very useful to keep all learning opportunities available. There are large number of tools online now which allow you to maintain several hundred conversations at once and ensure that you don’t let potentially important relationships go cold.

What’s the biggest challenge you’ve encountered so far?

Our biggest challenge has been our messaging and identity (i.e. “what are we?”). This is often the case for platform technologies — you can address multiple problems but the key is to find the underlying compelling narrative which brings it all together. Thinking more fundamentally about our technology and which direction we are heading has really helped us solve this problem. Traction also does wonders to identity woes because you get validation that what you’re building is something people want, so it’s much easier to speak to that than just a lofty garage band idea.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

At the moment we are focused on providing value to customers who seek the advantages of our technology. We are in the early stages of our long term goal of placing our system in every research lab around the world. These are primarily companies either creating high quality stem cells or turning stem cells into different tissues of the human body. In the very long term we want to place our instrument in all doctor’s offices so that unfortunate folks who are diagnosed with cancer can get personalized treatment plans tailored to their own immune system and cancer type. With this two pronged approach we aim to become industry leaders in both regenerative medicine and personalized medicine. We’ve got a long journey but we’re making good strides.

Learn more about Scaled Biolabs by watching them pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!

An Interview With Arshia Firouzi of Ravata Solutions

Ravata Solutions

Electronic Embryo Alteration.

Ravata Solutions

Photo: Arshia Firouzi (left) and Gurkern Sufi.

There are numerous reasons why new therapeutics take so long to become accessible to people suffering from life-threatening diseases. Many lab animals which are used in the testing of new treatments, most notably mice, often need to be genetically modified in order for them to best represent the condition that needs to be treated by new substances. The process of altering mouse embryos is extremely manual and time consuming, which is why Ravata Solutions has developed a new device to cut the process down to a fraction of its original time. We asked the company’s’ CEO and founder, Arshia Firouzi, a few questions:

Tell me about your background, how did you become interested in biotech?

I grew up in Southern Illinois and moved to Sacramento, California in late 2001. In 2011 I began my education at UC Davis where I studied Physics and Electrical Engineering. Following my graduation in 2016 I teamed up with my long-time friend and housemate Gurkern Sufi to start Ravata. We were and continue to be very excited about the intersection of electronics and biology. It is our view that the union of the two can accelerate achievement and advances in both fields.

My personal interest in public health stems from my experiences with my epilepsy. I am fortunate to have my seizures controlled but I continue to visit a neurologist and interact with many people having various neurological diseases. One of my favorite moments at Ravata was seeing the neuroscience research being done in mouse models. Knowing that our success means the success of neuroscience has fueled my passion for our work.

To an extent I almost feel like biotech became interested in me. I ended up with friends doing research in bio, professors working with biotech entrepreneurs, and then eventually a research project in biotech that led me to Ravata.

What problem are you working to solve with Ravata Solutions?

We are working to solve the limitations surrounding embryo engineering. Our technology is opening a bottleneck in the way genetically modified animals are created. Today, the process of transforming animal embryos is a manual one. As a result, animals used in medical research and preclinical trials can take over a year to produce. Furthermore, many times these animals are not good models of the disease they are meant to represent. What we are doing at Ravata is providing a cost effective and time efficient method to create quality animal models.  

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

The fact that we have a technology to make a difference and a focused team to bring it into reality is how I validated forming a startup.

How do you think success can change your industry?

Our success means that the rodent model industry can produce better animal models for medical research and preclinical trials faster (up to 100X) and more efficiently than ever before. This will significantly shorten the research and drug development timespan.

How is your team uniquely able to tackle this? What’s the expertise?

Our technology involves the intersection of electronics and biology. My team has the necessary experience with electrical engineering, biology, and material science to tackle the challenges associated with the science.

Any big lessons learned transitioning to startup entrepreneurship?

The biggest lesson I have learned transitioning to startup entrepreneurship is that having a great idea is only 1% of having a successful business. There are many great people with many brilliant ideas. It takes a combination of a large network, hard work, and strong mentors to be successful.

What’s the biggest challenge you’ve encountered so far?

The biggest challenge I have encountered so far is learning how to manage my bandwidth. There are always urgent tasks needing to be handled, many of which I have no experience with. In order to get through everything requires a new understanding of what is necessary, how to delegate tasks, and time management.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

In the short term, we are looking to finalize the designs for our current system and enter the rodent model market. In the long term, we are aiming to adapt our device to work with other animal models and eventually other cell types such as plants, fungi, and even human cells.

Learn more about Ravata Solutions by watching Arshia pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!

An Interview With Steve Kazemi of Pure Cultures

Pure Cultures

Enough With All the Antibiotics in Livestock.

Pure Cultures

It’s no secret that much of the animal meat consumed by humans contains antibiotics that are excessively used in the raising of livestock. This leads to damaging health effects in humans, and contributes to the ever-growing issue of antibiotic resistance. In comes Pure Cultures, a startup creating a solution for farmers who want to raise healthy animals and eliminate the overuse of antibiotics in the food chain. We asked the company’s CEO and co-founder, Steve Kazemi, a few questions:

Tell me about your background, how did you get interested in science?

I got interested in science early because my father is a petroleum engineer and a PhD professor at Colorado School of Mines. He always stressed the importance of science and math. I remember being around 10 years old when I asked for a chemistry set. It came with a burner, a set of chemicals, and a book of a couple hundred experiments. I probably completed half of the experiments within a few days.  

After college I moved back to Colorado and I was employed by Hauser Chemical in Boulder, where we were extracting Taxol from the bark of the Yew tree. Taxol is still one of the best chemotherapies for cancer. The culture of the company was similar to a university. There were many PhDs working at the company, and they had an open office policy where they would teach chemistry and engineering on a regular basis.  I loved the fact that we were saving lives with a novel cancer drug. Then we moved to producing high quality herbal products. I was excited to be affecting health with a more natural approach.

What problem are you working to solve with your company, Pure Cultures?

Bacteria are crafty. Their job is to learn how to survive in harsh conditions. When antibiotics are used in humans or animals, they kill both the good and bad bacteria, and the bacteria learns how to adapt quickly. Some bacteria are able to develop a resistance to the antibiotic dosed. If an animal or human then gets exposed to another pathogen that requires medical treatment, dosing with an antibiotic might not work because the bacteria are immune. This is what has caused 700,000 deaths a year in humans.

Antibiotics also travel up the food chain to humans from eating animals. 80% of human antibiotics produced are used in our livestock to promote weight gain, and many are used on healthy animals. By reducing even a small amount of these antibiotics, it will have a greater effect on saving human lives because the rate of antibiotic resistant bacteria generation will be slowed.

Pure Cultures believes that developing natural solutions to use as an alternative to antibiotics will have a significant effect on human health and our environment.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

When our solutions produce data that validates our product effectiveness, and our customers pay us, we will have validation we are building the right business.  

How do you think success can change your industry?

Our innovative natural solution is disrupting the animal nutrition space and will ultimately affect the health and wellness of meat-eating consumers.

How is your team uniquely able to tackle this? What’s the expertise?

The Pure Cultures team is constantly working to improve its technology – and move the science of probiotic product development forward. We have complementary backgrounds in science and business strategy. I have over 20 years of experience managing probiotic manufacturing operations for clients such as Trader Joe’s and Perrigo which generated $35 million in annual sales, in addition to having expertise in fermentation and operations.

Colleen is the co-founder and CMO, with over 20 years of marketing and business strategy experience working with Fortune 500 companies. She has deep experience in B2B sales and marketing strategy and execution. For the last five years she has served on the Board of Directors for Tomboyx, and consulted for several startups, accelerators, mid-level, and B2B enterprise companies located in major hubs nationally. Colleen and I are married and have a blended family of an 11-year-old, 15-year-old, 20-year-old and 28-year old.

Any big lessons learned transitioning to startup entrepreneurship?

Yes, great businesses are built on customers. Learning how to find customers and sell product has been challenging and rewarding.

What’s the biggest challenge you’ve encountered so far?

Time and money. We are constantly having to make decisions on where to focus our time to move as quickly as possible. We are on the cutting edge of a health conscience boom. We have the opportunity to be one of the first products on the market with our proprietary solution. We want to make smart decisions but move quickly.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

In the next four months, we want to raise our financing round while focusing on generating revenue. 2017 has started out great for us and we want to keep up the momentum.

In the long term, we intend to hire a CSO and broaden our understanding of how to produce novel antimicrobial agents.

Learn more about Pure Cultures by watching Steve pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!

Magnetic Pulses to Combat Depression: An Interview With Mehran Talebinejad of NeuroQore

NeuroQore
NeuroQore

Photo: The NeuroQore team (Mehran on far left). 

Depression is a major burden in many people’s lives who we know. Some of the treatments that are prescribed, like medication, are not always effective or without major side effects. Drug-resistant depression is sometimes treated with electroshock therapy, which is risky, despite being the gold standard. In comes NeuroQore, a new device that aims to treat depression by sending magnetic pulses to a small region of the brain, which is safer than electroshock therapy. We asked NeuroQore’s CEO, Mehran Talebinejad, a few questions:

Tell me about your background, how did you get interested in the biotech space?

As a teenager I was fascinated with brain machine interfaces (BMI) and mind uploading. This drove me to study Biomedical Engineering and go towards neural prosthetics and brain surgery. Fast forward 10 years after getting into the university, and I did my first brain surgery. During this surgery I realized the brain is so extremely complex, and machine BMIs have a long long way to go before being publicly available. I also realized non-invasive brain tools and neuromodulation is super important since we don’t have easy access to the brain while the skull is blocking us!

So how did you try to turn that complexity into something practical you could work on?

Among non-invasive approaches to brain stimulation or neuromodulation there are only two very promising approaches: the first is electroconvulsive therapy (ECT) or electroshock therapy. This is the gold standard for treatment of drug-resistant depression. The second is the magnetic brain stimulation or repetitive transcranial magnetic stimulation (rTMS), which emulates ECT in smaller brain regions without convulsion. ECT requires hospitalization, anesthesia, and has severe cognitive side effects (memory loss) and a risk of death. Less than 1% of patients are willing to endure ECT! On the other hand, rTMS is outpatient, has no systemic side effects and is widely accepted by patients. I saw the potential of rTMS and I had a vision to make it more accessible and more effective for treatment of drug-resistant depression and a range of other brain disorders (psychiatric and neurological).

What problem are you working to solve with your company, NeuroQore?

TMS is a platform tech with a range of applications, but we are focused on drug-resistant depression at this time. Over 16M patients are diagnosed with major depressive disorder (MDD) every year in the US, and more than 4M remain drug-resistant. Which means they do not get satisfactory results from drugs in the first line of therapy. There is an option for them to do ECT, but as I mentioned less than 1% willing to endure ECT (still over 100,000 patients/year). So there is a large unmet need, or I would say crisis, for drug-resistant depression. Depression is among few disorders in medicine where a patient says “I rather die than have this”! NeuroQore is set to make TMS accessible and more effective as an alternative option to ECT.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

The indicator is being able to execute on my own vision and feeling satisfied after seeing patients getting into remission. Patients bring us all types gifts and flowers in the last sessions of their treatment, and almost all of them have been super satisfied, which is very fulfilling for me.

How do you think success can change your industry?

NeuroQore is set to change mental health care and psychiatry as we know it, a condition that has been relatively unchanged since the 1960s. Patients with depression will be able to go to our centers (i.e. the “Apple Store for Depression”), monitor their depression with physical evidence (biomarkers not just anecdotal questioners), and finally get effective outpatient treatment! Today mental health care and psychiatry both suck, it is literally depressing to get depression treatment.

How is your team uniquely able to tackle this? What’s the expertise?

We have a great multi-disciplinary team and have been working together for over a decade. My academic background is in biomedical engineering, neuroscience, and technology management. I was selected as a rising star CEO by Invest Ottawa and I have been recognized and awarded many times for my work at NeuroQore as a co-founder and CEO.

Adrian is my co-inventor and co-founder, and has been working with me for over 14 years. He is an award winning expert in scientific research and development, with academic background in electrical and biomedical engineering specialized in non-invasive approaches.

Jonathan is a pioneering rTMS clinician/psychiatrist. He is very well known and well respected in the psychiatry society, and has had amazing contributions to improve clinical rTMS for depression treatment. He has experienced over 2,000 patients in his practice to date.

Brittany is an angel, she is our anticipatory patient service expert, with an academic background in psychology and mental health neuroscience. Her role is crucial in patient experience, which is very important for mental health. She is helping us change mental health care as we know it with her innovative service approach.

Any big lessons learned transitioning to startup entrepreneurship?

Life can be very exciting and fulfilling, but as an entrepreneur I must be ready for anything above and beyond what I know and have learned. I must be ready to learn on the fly and adapt to new situations.

What’s the biggest challenge you’ve encountered so far?

Educating the government, the public, and clinicians about rTMS and non-drug depression treatment… and removing the stigma of depression.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

In 2017 we will have four centers operational/active in California (SF, LA, Oakland, and Long Beach), and in the long term we are planning to repeat this model across the US with over 100 centers in the next three years.

Learn more about NeuroQore by watching Mehran pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!

Designing Drugs In Silico: An Interview With Ed Painter of A2A Pharmaceuticals

What if people suffering from cancer, tuberculosis, and other life-threatening diseases didn’t have to wait as long for the right drugs to be developed to help them stay alive? A2A Pharmaceuticals is a biotechnology company committed to the advancement of innovative scientific research and new therapeutic agents. We asked the company’s founder, Ed Painter, a few questions:

Tell me about your background, how did you get interested in the science/biotech space?

From my initial exposure to biotech companies like Amgen and Genentech doing research on cancer and other life threatening diseases around 20 years ago, I have been fascinated with process of building businesses around critical therapeutics. My success with investments in public companies gave me a great understanding of what is needed to make a company succeed.

What problem are you working to solve with your company, A2A Pharmaceuticals?

With A2A Pharmaceuticals we are addressing the extremely high cost and long time needed to make new therapeutics available to patients. We use both proprietary and commercially available software to make the process dramatically less expensive, faster and more likely to result in success.

“With A2A Pharmaceuticals we are addressing the extremely high cost and long time needed to make new therapeutics available to patients.”

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

Few people get a chance to save a person’s life. That is the greatest accomplishment to which A2A aspires.

How do you think success can change your industry?

By illustrating the effectiveness of using computational tools to develop new drug candidates, we hope to help drive more interest and investment in software tools that can help get new medications to patients.

How is your team uniquely able to tackle this? What’s the expertise?

The capabilities of A2A’s team range from founder Sridhar Vempati’s skills with selection of disease targets to Brendan Kelly’s skills with development and use of drug design tools.

Any big lessons learned transitioning to startup entrepreneurship?

We are learning every day. The lessons most critical include making sure employees are happy and the power of networking to find the people who will make the company work.

What’s the biggest challenge you’ve encountered so far?

One of the most important dynamics we face on a daily basis is the need to manage expectations as we strive to exceed.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

A2A is currently doing proof of concept work on a Leukemia drug. We hope to have positive results before the end of January. We are also working on partnerships with other pharmaceutical companies to help advance our new drug programs for cancer and drug-resistant bacterial infections as well as programs conceived by third parties.

Learn more about A2A Pharmaceuticals by watching Ed pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here

Improving Your Pet’s Digestive Health With Science: An Interview with Holly Ganz of AnimalBiome

It’s not uncommon for a pet dog or cat to have digestive issues, especially early in life. Instead of treating the root of the problem—an imbalance of good and bad bacteria in the gut—veterinarians commonly prescribe antibiotics. Without a true fix for the problem, pets can fall victim to a number of other health issues later in life as a result.

Animal Biome is harnessing the power of the microbiome to make targeted therapeutics for dogs and cats that are suffering from digestive issues. We asked the company’s CEO, Holly Ganz, a few questions:

Tell me about your background, how did you get interested in the biotech space?

Up until recently, I was an academic researcher working at UC Davis studying co-evolution between animals and microbes. I became interested in the biotech space after launching a citizen science project to study the microbiology of domestic cats. From this experience, I learned that digestive disorders are common in cats and that many of these kitties have an imbalance in the composition of bacteria in their gut. I found that chronic conditions like Irritable Bowel Disease cost pet owners thousands of dollars to diagnose and manage, and there is currently no cure. My goal is to rapidly translate what we are learning in our research to create solutions for pet owners.

“I found that chronic conditions like Irritable Bowel Disease cost pet owners thousands of dollars to diagnose and manage, and there is currently no cure.”

Holly Ganz, CEO

What problem are you working to solve with your company, AnimalBiome?

We estimate that about 10 million dogs and cats in the US suffer from digestive disorders. Based on our research, we have found that many digestive disorders are linked to low bacterial diversity in the gut. The current solutions to these disorders are expensive and they only address the symptoms, not the source of the problem. At AnimalBiome, we are using our assessment kit to allow pet owners to view their pet’s bacterial diversity, and we are developing solutions in the form of fecal transplant pills and cat- and dog-specific probiotic mixtures.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

Our customers and partner veterinarians are already telling us that we are doing the right thing. It is a certainty that microbiome data is going to be used to improve the health and wellness of both pets and their owners in the future, and we are striving to make that happen as soon as possible.

How do you think success can change your industry?

Our success can change the pet health industry by enabling pet owners and veterinarians to make data driven decisions about the care of their pets. The gut microbiome influences more than just digestion; it’s been linked to conditions such as allergies, diabetes and even depression. The more pet owners we have participating in our cause, the more successful we will be at addressing the underlying role of gut bacteria in a wide variety of disorders.

How is your team uniquely able to tackle this? What’s the expertise?

Our team of scientists has amassed the largest database in the world on the microbiome of the order Carnivora (dogs, cats, and their close relatives). We are researchers from UC Davis and UC Berkeley, who have published more than 30 papers and have extensive experience in both microbiology, computational biology and data analytics.

“Our team of scientists has amassed the largest database in the world on the microbiome of the order Carnivora (dogs, cats, and their close relatives).”

Holly Ganz, CEO

Any big lessons learned transitioning to startup entrepreneurship?

In academia, we have more freedom to pursue our own personal, intellectual interests, so long as we can find funding to do so. In the private sector you have to understand the market needs and focus your time on building your business to meet those needs.

What’s the biggest challenge you’ve encountered so far?

We’ve developed personal relationships with a number of our customers who have grieved the loss of their companion animal. Although we are currently able to diagnose low gut bacteria diversity, we do not yet have the amount of data necessary to provide tailored cures for their pets. The biggest challenge we’re currently facing is learning how to quickly spread our mission so we can provide solutions to ailing pets as soon as possible.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

Our big goal in the short term is to hit 5,000 participants in DoggyBiome and KittyBiome. In the long term, our goal is to create tailored probiotics using isolates that we have identified from this database as being essential for animal health.

Check out the products in Animal Biome’s shop, and register for the IndieBio Demo Day LiveStream (Feb. 9th) to watch them pitch! 

Founder Stories: an Interview with Maria from SyntheX Labs

Founder Stories: an Interview with Maria from SyntheX Labs
Founder Stories: an Interview with Maria from SyntheX Labs

Maria Soloveychik is the CEO and co-founder of SyntheX Labs, a biotech company developing peptide therapeutics for cancer and other rare diseases.

A: Tell me about your background, how did you get interested in the biotech space?

M: So it started in 8th when I decided I wanted to do biology so I could clone endangered species and play with water bears. Later on, as an undergrad, I realized how much I loved experimental design and research so getting a PhD was a no-brainer. After getting exposed to many different fields, from biochemistry to cell biology to microscopy, I decided on Cellular Metabolism since it’s vital in so many life processes. Going to University of Toronto allowed me to be in a world class molecular genetics department and surrounded by cutting edge research, while also being able to push my own projects forward.

A: What problem are you working to solve with your company, SyntheX?

M: We’re designing a platform for drug discovery to target previously undruggable targets for cancer and other rare diseases. There are over 650,000 protein-protein interactions that we know of in human cells, and there is only one drug that has been approved that can break one of these interactions. If our platform works it opens up this enormous space of possibility to treat previously incurable diseases.

A: It sounds like you have really ambitious goals for SyntheX, what type of progress have you been able to make towards them so far?

M: We came into IndieBio with an idea for a drug discovery platform and a list of targets. In the three months since then we’ve built out the platform, created compounds, and tested them in clinical models. We started with a compound to target incurable liver cancer, Intrahepatic Cholangiocarcinoma (ICC), and Castration Resistant Prostate Cancer (CRPC). By targeting a specific pathway they both rely on we have seen very selective and potent killing of the ICC and CRPC cells that we’re now working to test in animal models.

A: How is your team uniquely able to tackle this challenge? What’s the expertise?

M: Charlie, our CSO, and I have different, but complementing skillsets that give us a unified view of drug design. Together we have decades of experience in cancer biology, structural biology, and genetic engineering that are all invaluable. Realizing how tough this industry is, we’ve worked really hard to get great advisors who have taken drugs through the FDA for indications we’re targeting. Their experience has been incredibly useful in guiding us.

A: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

M: For the company, the ultimate validation by far is finding ways to cure previously incurable diseases. Personally, this feels very natural to me since it provides such a level of control of your own work and results. In academia, we make these type of discoveries frequently, but it’s so rare that they’re applied and brought to the world.

A: So speaking of academia, any big lessons learned transitioning from there to startup entrepreneurship?

M: So many actually. The biggest was transitioning to thinking about the economics behind science and funding from private sources instead of grants. Raising funds and planning milestone achievement has been a new challenge that we’re learning more about every day. Personally, I’ve gone from a purely scientific role into a business role where I have to communicate the science in a way that’s accessible to non-experts.

AK: How do you think success can change your industry?

M: I think it opens the door to a lot more young startups with outside the box ideas to go out and make them a reality. Big pharma can seem like an intimidating black box from the outside and we want other grad students and postdocs to be able to go out and create new innovative companies.

A: What are the big goals and milestones you’re looking to hit in the short term? Long term?

M: In the short term, we’re looking to move our compounds into development and secure funding to hire more talent to round out our team. Long term, it’s about establishing strategic partnerships to move into the clinic quickly and see patients benefiting from the treatments we’re developing.

You can reach Maria at msoloveychik@synthexlabs.com or twitter — mso_nightingale

Are you a scientist looking to build the next generation of biotech companies? Apply to IndieBio San Francisco

IndieBio and NIH’s National Institute Drug Abuse announce collaboration on $100k Startup Challenge

IndieBio and NIH's National Institute Drug Abuse announce collaboration on $100k Startup Challenge
IndieBio and NIH's National Institute Drug Abuse announce collaboration on $100k Startup Challenge

IndieBio and the National Institute on Drug Abuse (NIDA ), part of the U.S. National Institutes of Health (NIH) are excited to announce a historic new collaboration aimed at accelerating the formation of biotech startups which will tackle the issues of drug abuse and addiction in the USA via the “$100K to Start a SUD Startup” Challenge.

Estimated at seven hundred billion dollars a year in total cost to the economy, drug abuse is one of biggest health-related issues in the country. Drug use and substance use disorders (SUDs) affect millions of Americans and impose enormous costs on society. In 2014, nearly 27 million people in the U.S. were current users of illicit drugs or misused prescription drugs.

This collaboration looks for biomedical and psychological approaches to treating or preventing SUD by taking basic research and creating a startup to commercialize the application of the underlying technology. “We built IndieBio next to 6th street, an area of San Francisco that has a high concentration of drug abuse because we believe it is important to be part of change in whatever you do.” Said Arvind Gupta, Managing Director of IndieBio.

Ryan Bethencourt, IndieBio Program Director continues, “We see the effects of drug abuse and its criminalization daily and believe there must be a better way to help those affected by this disease. Working with NIDA to help scientists start startups is what we are already set up to do. Drug abuse is a huge and seemingly impossible problem, exactly the type of challenge we like to take on.”

In 2016, NIDA will be awarding $10,000 prizes to 10 winners of the Challenge contest. The Challenge is to turn a research idea into a working prototype of the product. If the product prototype is successfully validated, it is expected that the decision to create a biotech startup will be made no later than 6 months after the prize is awarded.

If you are a researcher who believes your work could qualify and you think you can change the world with your technology, please apply today!

For more info on the $100,000 for Start a SUD Startup Challenge, please visit: www.challenge.gov/challenge/100000-for-start-a-sud-startup/

About the National Institute on Drug Abuse (NIDA):

The National Institute on Drug Abuse (NIDA) is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world’s research on the health aspects of drug use and addiction. The Institute carries out a large variety of programs to inform policy, improve practice, and advance addiction science. Fact sheets on the health effects of drugs and information on NIDA research and other activities can be found at www.drugabuse.gov.

About IndieBio:

IndieBio is short for Independent Biology, a new way for scientists, entrepreneurs, and tinkerers to shape their own destiny and make something that matters. Funded out of the SOS Ventures, IndieBio is the first accelerator to exclusively focus on life science startups. IndieBio provides seed funding and intensive mentorship to drive the transition of ideas from bench to prototype within three months, and launching graduate companies with disruptive technologies into the world of biotechnology. For more information on IndieBio please visit: http://sf.indie.bio/

Bringing Biotech to the Masses: an Interview with Julie Legault of Amino

Bringing Biotech to the Masses: an Interview with Julie Legault of Amino

Even though biotech has a huge impact on the lives of the general public, it is an intimidating and foreign space to many. The everyday person rarely feels like they can understand and play a role in this massive field.

Amino Labs is making science accessible to the masses by creating an easy to use biokit for the consumer home. I spoke with Julie, the CEO, about her unexpected path to biotech, approaching the field from design, and the impact of an at-home biokit. Check out her pitch live on February 4th on IndieBio’s Demo Day Livestream!

A: Tell me about your background, how did you get interested in the biotech space?

J: I never imagined I would become involved in the biotech space, to be quite honest. It seemed very foreign, complex and closed-off considering my background is in Design and Applied Arts. I’ve been focused on translating important technological advancement into understandable and desirable applications for the broader public – mainly in the field of wearables. I was actually inspired by synthetic biology when I came across the banana smell program from biobuilder in a microfluidics course I was taking to create a wearable. Long story short, I met Natalie Kuldell of Biobuilder and was amazed that a non-scientist like me could hack biology and create a living thing in a few days. A living thing that produced a smell or a pigment! I was inspired by what synthetic biology allowed me to create,  and amazed at how much a similarly simple three-day hands-on experience with bioengineering actually informed my opinion of it – I experienced the creative side of making with biology, and saw all that is possible to create currently and in the future.

A: What problem are you working to solve with your company, Amino?

J: Seeing the reaction of friends with no hands-on experience, and my struggle to recreate a hands-on bioengineering success outside of a workshop or lab, the idea of the Amino One platform came about. An easy playful way for anyone to have the workshop experience in their home or school. Stumbling on a fun and easy hands-on workshop for bioengineering is far from common, yet everyone is affected in one way or another by the products of bioengineering.

At the moment, the science is facing a difficult problem. There is an incredible lag between the importance of synbio and biotechnology in our daily lives and our general perception of it. The applications have tremendous benefits for us, yet society’s view of it is broadly negative.  This is always the case whenever science advances faster than our ability to comprehend it, simply think back to the early days of computers. In this societal context, I saw an opportunity for me to do important, significant work. With my design background and newfound friends in the science world, I was uniquely placed create a hands-on learning platform that could reach a broader audience. This first-hand experience allows individuals to feel entitled to partake in the difficult discussions about ethics, safety, and applications of biotech.

We see the potential of the Amino One to enable millions more people to enter the field of bioengineering and make sure the next generation of problem-solvers is equipped with the right tools and knowledge to produce, create and solve.

A: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

J: I can’t imagine a world in which all the power, decision and creation offered through bioengineering rests in the hands of the few and the elite while it influencing our very way of living. Everyone has the basic right to understand where and how new food, fuels, medicines and materials come into existence, and experience the basic of this science first hands to enable them to make informed thoughtful decisions. Furthermore, anyone that desires it should have the chance to try and create safe and imaginative solutions, entertainment, and experiences for their own lives.

A: How do you think success can change your industry?

J: We really believe that throwing open the doors to the science will allow technological advancement in the field to advance significantly faster by allowing the public to partake in critical efforts, development and discussions. For example, the mainstream adoption of computers allowed us to take all the leaps and bounds that brought us us to where we are today: Most of what your phone and computers allow you to do, personally, professionally, socially and on the larger human-scale was made possible by this democratization of computer science. We know that opening up bioengineering in a similar way will allow us to go even further, faster.

A: How is your team uniquely able to tackle this? What’s the expertise?

J: Our expertise ranges from science, synthetic biology, and bioengineering, to mechanical and electrical engineers, software developers and data storytellers, to educators and designers. Having this broad range of skills really makes us uniquely positioned to understand the user experience, the servicing experience and the technical and scientific aspects of it. But mostly, I think it is everyone’s passion for different aspects of the Amino Labs Dream that makes us stand out.

A: Any big lessons learned transitioning to startup entrepreneurship?

J: Considering I had never planned on founding a startup and it all happened organically, the first lesson is be ready for anything!  When my thesis research on Amino ended as I was graduating, it was clear to me that I had to bring the Amino One platform into real people’s hands. Though I still resisted the idea of having a startup, I brought some friends together and, as a team, we rebuilt the prototype from an academic demo into a consumer-ready (almost ready) product. Even though I still am not very comfortable with the idea of having a “startup”, it really is a great experience and sense of achievement to bring your research from some theoretical, somewhat working prototype into something real-world people care about and are willing to have in their house!  

The lesson I learned which applies perhaps mostly to the designers out there is that even though you know compromises will be necessary along the way they will still be difficult. Between usability, function, user experience, aesthetics, price, sustainability, focus, and funding, there are so many things to consider that lead to hard decisions. So trust your instinct, trust your team, but more importantly, trust your actual, real-life users. And keep user-testing! Remember the long term goals… I can’t imagine not having any Amino One, Two or Threes out there in the wild, and if it means compromising on that lush material I had my eye on for the shell, well, so be it.

A: What’s the biggest challenge you’ve encountered so far?

J: Actually, I don’t believe we have faced a major challenge so far. We have been very very fortunate in that way. We do, however, foresee our biggest challenge coming up quickly – we  have the need to scale up production of the Amino One much quicker than expected (which is a good problem to have, but still)! This means entering the large scale manufacturing world. We have a few leads and ideas on how to proceed, but this will definitely be a new experience for most of us.

A: What are the big goals and milestones you’re looking to hit in the short term? Long term?

J: In the short term, we will be shipping out the fifty Amino Ones sold on Indiegogo, all hand-assembled by us in wintery Canada! Following this, we are starting our “workshop series” where we will be visiting schools, museums, fablabs all around the world for 3+ day workshops using Amino One to spread open bioengineering and refine our curriculum and product. The longer term will see us going into larger scale production and shipping out products to schools at the district level before entering the home market in the coming years as we develop more home-centric apps like the ones for brewing and baking.

Get in touch with Julie at julie@amino.bio

Enabling Proactive Medicine with the Immune System: an Interview with Anitha Jayaprakash of Girihlet

Enabling Proactive Medicine with the Immune System: an Interview with Anitha Jayaprakash of Girihlet

The immune system is the cornerstone of our health and ability to fight disease, but there are no methods to truly monitor its status. As a result, medicine is forced into being reactive to illness, rather than fighting disease before it starts.

Girihlet is working towards a future where the immune system is monitored at every doctor’s visit and we can predict our resilience to disease before it happens. I talked with Anitha, one of the co-founders, about how her team is tackling this problem, the future of Girihlet, and how this technology can change public health. Check out her pitch live on February 4th on IndieBio’s Demo Day Livestream!

AK: Tell me about your background, how did you get interested in the biotech space?

AJ: I’ve always been interested in the field of biology and all the processes going on inside the human body so it was natural for me to go to Mount Sinai School of Medicine and get a PhD in Genetics. That lifelong curiosity about the human body still exists. Given that, the goal is to be able to understand and monitor the immune system, which is an integral part of the human body.

AK: What problem are you working to solve with your company, Girihlet?

AJ: Medicine is currently reactive, and we want to make it proactive. There are so many components being measured today to monitor health, but they don’t give us a clear picture of what’s going on. We think measuring your immune system is a more complete window to your health because it’s highly dynamic, predictive, and retains memories of past events. We are currently building an immune database using proprietary technology that can give us infection profiles that show your ability to fight infections before you get them

AK: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

AJ: We want this technology to reach and help the general public. We were concerned that if this technology were sold it wouldn’t get to the public and reach its full potential. As the inventors, we‘re best positioned to bring this technology to the masses and have a big impact on public health.

AK: How do you think success can change your industry?

AJ: We want monitoring the health of the immune system to become the norm. It’s also critical that everyone would have the right to access their own health profile and information.

AK: How is your team uniquely able to tackle this? What’s the expertise?

AJ: Our expertise is in analyzing big data and finding patterns. We have a deep understanding of the genome, including its limitations. We’ve also built many novel sequencing technologies. There’s a lot of data being generated and analyzed in many industries. But the problem is most people aren’t generating accurate data. We have the biological expertise to be able to ask the right questions in order to get the right information. To complement that we have the ability to analyze this data to create useful applications.

AK: Any big lessons learned transitioning from academia to startup entrepreneurship?

AJ: As an entrepreneur it’s very important to always keep yourself connected to the science world so you don’t get lost in your work and fall behind relevant advancements. There’s no longer the scientific debate and rigor of the scientific world to keep you grounded and guided. So we’ve built a really strong scientific advisory board to make sure we don’t lose our scientific edge.

AK: What’s the biggest challenge you’ve encountered so far?

AJ: Getting researchers to believe in a startup and that we’re well positioned to build technologies. We need to convey to the scientific community that together we can solve significant scientific problems and have a tangible impact on public health.

AK: What are the big goals and milestones you’re looking to hit in the short term? Long term?

AJ: Short term we want to validate the clinical application of our technology. We’ve started collaborating with clinicians at UCSF and Mount Sinai to further this goal. In the long term, we want to develop this valuable immune database that will help us identify patterns of health and bring it to the general public.

Get in touch with Anitha at anitha@girihlet.com

Reprogramming Cancer and the Future of Medicine: an Interview with Andrew Gray of Vali Nanomedical

Reprogramming Cancer and the Future of Medicine: an Interview with Andrew Gray of Vali Nanomedical
Reprogramming Cancer and the Future of Medicine: an Interview with Andrew Gray of Vali Nanomedical

Drug delivery is one of the greatest challenges in treating cancer today. There are a multitude of effective drugs that aren’t able to be delivered to tumor sites, or can not be delivered in combination.

Vali Nanomedical is now solving these drug delivery problems with a revolutionary programmable drug delivery system, and working towards a future where in vivo cellular reprogramming can cure disease without even using drugs. I talked with Andrew, Vali’s CEO, about his path to entrepreneurship, its challenges, and the future of Vali. Check out his pitch from IndieBio’s Demo Day Livestream!

AK: Tell me about your background, how did you get interested in the biotech space?

AG: I have PhD in molecular biology, focusing on cancer and developing cancer vaccines as a grad student. I got involved in nanotech knowing that starting a company was the goal. Early on I took a class on entrepreneurship and knew right away that was the path for me, not traditional academia. Going into startups has been really exciting since it’s been a goal for some time.

AK: What problem are you working to solve with your company, Vali?

AG: The biggest issue in cancer is delivering drugs to where they need to be. There are a lot of great drugs out there that can’t reach the right place or are toxic. At Vali Nanomedical, we created a programmable nanoparticle that homes onto cancer cells and releases drugs there but doesn’t harm healthy cells. It’s like making a smart missile that knows when it has missed and refuses to detonate when it’s in the wrong place.

AK: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

AG: This is the first time in my entire career that I’ve felt like I’m at home. Every day flies by and is exciting.

AK: How do you think success can change your industry?

AG: We envision a world where drugs aren’t used at all to treat disease. Instead, we’d use our technology to reprogram cells to either return to a healthy state or, if they’re too far gone like cancer cells, reprogrammed to kill themselves. Ultimately we want to make cancer a disease of the past.

AK: How is your team uniquely able to tackle this? What’s the expertise?

AG: We have a fantastic team with very complementary skills. Prof. Mike Wong is a physician-scientist who has dedicated his career to finding better ways to treat cancer. As I mentioned, I’m an expert in the molecular biology of cancer. Prof. Pin Wang is an absurdly accomplished and productive biomedical engineer at USC. The founding team is backed up by industry veterans, including former director of BD at Amgen Holly Hartman and Prof. John Daniels, who literally launched an industry by inventing and commercialized collagen for injection. Between us, we have all the skills necessary to make our grand dream a reality.

AK: Any big lessons learned transitioning from academia to startup entrepreneurship?

AG: You have to reframe the way you talk about your work. Academics are trained to talk about the things they’re 99% sure they’ve figured out. As an entrepreneur, you talk about problems that you haven’t solved yet and demonstrate you have a plan to get there.

AK: What’s the biggest challenge you’ve encountered so far?

AG: Finding the right first addition to the team. It was only by good luck and timing that I found the perfect person to add to the team. He was an amazing materials scientists named Don Johnson, who’s also a PhD.

AK: What are the big goals and milestones you’re looking to hit in the short term? Long term?

AG: Short term are building multiple partnerships with pharma to deliver drugs they can’t deliver now, either alone or in combination to treat cancer. We’re uniquely capable of doing combination therapies. Like I said, in the long term we want to make cancer a disease of the past.
Get in touch with Andrew at andrew.gray@valinano.com

Powering Discovery with Proteomics: an Interview with Jun Axup of MYi

Reprogramming Cancer and the Future of Medicine: an Interview with Andrew Gray of Vali Nanomedical
Reprogramming Cancer and the Future of Medicine: an Interview with Andrew Gray of Vali Nanomedical

Next-generation DNA sequencing technology has revolutionized biological research over the last decade, but very few advancements have been made in proteomics, the next great frontier of biological data.

MYi is developing these new methods to study proteins in order to better understand, manage, and cure disease. I spoke with Jun, the company’s COO, to learn about the team’s expertise, the potential of the field of proteomics, and the impact MYi hopes to have. Check out her pitch live on February 4th on IndieBio’s Demo Day Livestream!

A: Tell me about your background, how did you get interested in the biotech space?

J: Our team knew each other from our time at The Scripps Research Institute, where I obtained my Ph.D. in chemical biology. I’ve always wanted to apply my work to therapeutics, but after working in that industry, I realized the slow pace of biological discovery. Leaps in innovation only happen after technological breakthroughs that make research better, faster, cheaper, and more accessible. Hence at MYi, we are doing just that.

A: What problem are you working to solve at your company, MYi?

J: MYi is developing high-throughput assays to look at multiple proteins in a single sample by utilizing the advancements in next-generation sequencing. Proteomic analysis today is very low-throughput and expensive because it is difficult to amplify and manipulate the signal of proteins. However, if we can bridge protein technologies with DNA technologies, like PCR and sequencing, we open up a lot of opportunities. We do this by putting DNA tags on protein-binding molecules, like antibodies. With our technology, we will enable the next wave of biological data and facilitate precision medicine.

A: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

J: There are too many diseases, both common and rare, that we can’t cure or even effectively manage.  Our inability to do so is due to a major knowledge gap in our understanding of the molecular basis of these diseases.  While DNA sequencing has begun to fill in these gaps, our genetics are only a part of the story.  MYi is further filling this knowledge gap by analyzing proteins in an unbiased way to find disease patterns that no one knew were even there. Our biggest validation would be to find the root cause of an individual’s disease in a manner that would lead to an intervention.

A: How do you think success can change your industry?

J: Like how next-generation sequencing technologies enabled and accelerated the field of genomics, MYi hopes to bring that growth to proteomics. Furthermore, this will create a flood of data that, in combination with genomic and exome data, will inform therapeutic development.

A: How is your team uniquely able to tackle this? What’s the expertise?

J: Our team consists of accomplished scientists in personalized medicine and bioinformatics, like Nicholas Schork (CEO) and Kristopher Nazor (CSO), who have shown that big data approaches can advance our understanding of complex diseases such as cancer or even autism. Additionally, we have experts in bioconjugation and nucleic acid chemistry, such as Devon Cayer (CTO) and myself. We are also joined by a seasoned business officer, Maria Forero. Together, we have the technical and business experience to realize the vision that we all share.

A: Any big lessons learned transitioning from academia to startup entrepreneurship?

J: Being in academia and in a startup are actually very similar: long hours, low pay, drive to innovate, and responsibilities to funding agencies (grants/journals vs investors/customers). The biggest difference is that in a startup you are a part of a team that is all running towards the same goal. The camaraderie and support is invaluable.

A: What’s the biggest challenge you’ve encountered so far?

J: Running a biotech startup in a lean manner has been very challenging. Unlike software-based companies, biology has a lot of overhead in lab space, consumables, and operational logistics that are both expensive and time-consuming. It’s a huge challenge to juggle the science, business, customer acquisition, and funding all at once while under a time crunch. But that’s also why this stage of a startup is the most fun and exciting.

A: What are the big goals and milestones you’re looking to hit in the short term? Long term?

J: The first major milestone is to get our first assay kit on the market. From there we hope to scale, create follow-up products, and partner with other organizations to develop diagnostics and therapeutics.
Get in touch with Jun at jun@myidiagnostics.com

Taking Control of Cellular Protein Output: an Interview with Paul Feldstein of Circularis

Taking Control of Cellular Protein Output: an Interview with Paul Feldstein of Circularis

Cellular protein production is used across industries to create products for medicine, consumers, research, and more. However, the technology to do so in the most efficient and effective ways has lagged behind production.

Circularis is using their expertise in discovering, analyzing, and evolving cellular promoters in order to regulate protein production with revolutionary precision. I talked to the company’s CEO, Paul Feldstein, about his team’s expertise, taking this advanced technology from academia to startups, and how Circularis will push biotech forward. Check out his pitch live on February 4th on IndieBio’s Demo Day Livestream!

A: Tell me about your background, how did you get involved in the biotech space?

P: I received my PhD at UC Davis in biochemistry and worked in one of the pioneering ribozyme (catalytic RNA) labs. So my background is in RNA biochemistry, and I have been working on research with the most primitive molecular parasites. These are made of RNA, are even simpler than viruses, and have led to the development of useful molecular tools.

A: What problem are you working to solve with your company, Circularis?

P: For years we’ve been thinking about better ways to find promoters since the current tools are cumbersome and hard to work with. Our technology can discover, analyze, and evolve promoters. There’s a lot we can do with that. We can regulate protein production to increase or decrease cellular output. We can do diagnostics to see how cells change in disease states. We can do therapeutics. Ultimately, a cell has to turn on a genetic program to respond to signals and that program is driven by promoters.

A: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

P: We want to help great companies become even better. There are a lot of companies that are making proteins and facing challenges. We think we can make them better and drive the field of biotech forward.

A: How do you think success can change your industry?

P: Microbes, plant, and animal cells are precision instruments that everyone is trying to manipulate. Right now the whole field of biotech is trying to use sledgehammers to control these small precise instruments. We’re making precision tools to actually control cells effectively.

A: How is your team uniquely able to tackle this? What’s the expertise?

P: My experience in biochemistry is allowing us to develop the fundamental technology. Jim and LeAnn know how to apply it to plant and animal cells. We have decades of experience developing these tools from scratch and working together.

A: Any big lessons learned transitioning from academia to startup entrepreneurship?

P: It’s an entirely different world. I’m used to being judged only on the basis of the science in academia. In startups people think the science is interesting, but they really want to know how we’re going to make money and be a viable company. This a big learning curve and means we’re learning a totally different language. Academics talk for a long time about details, and here we’re giving five-minute pitches to explain everything.

A: What are the big goals and milestones you’re looking to hit in the short term? Long term?

P: In the short term we aim to successfully complete our pilot projects and develop longer term ongoing business relationships with our customers. In the long term, we want to expand our repertoire of organisms that we work on from only microbes to include mammalian and plant cells.

Get in touch with Paul at pafeldstein@circularisbiotech.com

Unlocking Gene Therapy for the Masses: an interview with Ryan Pawell of Indee

Unlocking Gene Therapy for the Masses: an interview with Ryan Pawell of Indee

The science of gene therapy poses one of the greatest technical challenges in modern medicine. Researchers and industry face the significant challenge of introducing new functioning genes into cells, and doing so in a scalable and affordable manner.

Indee is a biotech startup developing new tools for gene therapy to bring it to the masses. They’re  currently part of IndieBio’s second class of startups. I talked to the company’s CEO, Ryan Pawell, about his story, transitioning to entrepreneurship, and the future of Indee. Check out his pitch live on February 4th on IndieBio’s Demo Day Livestream!

A: Tell me about your background, how did you get interested in the biotech space?

R: I have a B.S. in Mechanical Engineering. My senior project was developing tools for cervical spinal surgeries, and I also worked for a couple years on portable oxygen concentrators to treat breathing disorders like COPD. I realized I wanted to get into stem cells, and thought microfluidics was a good route since it was a high value and low-cost tech for stem cell manufacturing with good potential business models. All that led me to do a Microfluidics PhD in Australia.

A: What problem are you working to solve with your company, Indee?

R: Indee is solving scalable gene delivery. This is really important for gene therapy since right now scales are limited to just a few thousand wealthy patients per year. Creating a scalable process can treat tens of millions of people that die from multiple diseases every year.

A: If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the biggest indicator that you are doing the right thing?

R: I just don’t like having a boss. My first job was working for myself, and it was more rewarding and flexible. The whole point of this startup is to work on something that helps other people while enjoying the benefits of self-employment. Right now at an early stage startup there aren’t really any benefits of self-employment [laughs].

A: How do you think success can change your industry?

R: We’re looking to ultimately manufacture these life-changing therapeutics for tens of millions of people every year.

A: How is your team uniquely able to tackle this? What’s the expertise?

R: Our team consists of two full-time employees (myself included), eight advisors, some high-value contractors, and IndieBio/SOSV. Our expertise is in both microfluidics, fluid dynamics, and cell biology. My co-founder, Matt, handles the biology and business development. I do the engineering and operations. Having a co-founder with complementary and effective skillsets has made a huge difference.

A: Any big lessons learned transitioning from academia to startup entrepreneurship?

R: Startups are exciting, challenging, and fast-paced. Academia… not so much.

A: What’s the biggest challenge you’ve encountered so far?

R: It can be tough to stay on top of everything. We have a great two person team but when the work piles up three would be nice [laughs].

A: What are the big goals and milestones you’re looking to hit in the short term? Long term?

R: Our big goals are to verify our technology and sign our next investment. In the short term we want to show gene editing and be able to process 10,000 samples a week. This is proof of concept for a 50-fold improvement over current manufacturing scales without spending 43 million dollars for a manufacturing plant, because we don’t have that. In the long term we’d like to use that system to manufacture 10,000 therapeutics per week so we could treat half a million patients per year.

Get in touch with Ryan at rpawell@indeetx.com

Reimagining the Future with Biology

Reimagining the Future with Biology
Reimagining the Future with Biology

Today, Bolt Threads, previously Refactored Materials announced that they’d raised $40M in their latest round of financing and expect to have their yeast derived spiders silk (10x stronger than steel per weight) available for sale by 2016.

The new Bolt Threads biomaterial will have applications we can only now dream of and likely many, we have yet to dream and this is only the beginning of the new bioeconomy that’s being built around us, in university, commercial and biohacker labs around the world.

Over the last four months, our first IndieBio class in San Francisco (IB1), we’ve seen what’s possible when scientists, innovators and pioneers join together to accelerate how we build our world with biology.Amazing companies, products and services have been built in a spirit of camaraderie and collaboration (both within the first cohort and with the broader community) which is stark contrast to many of the innovation silos we’ve all experienced in academia and industry.

Our first time founders have worked side by side with each other and veteran entrepreneurs and scientists (across all industries) to reimagine a world in which previously intractable problems might now be solved with applied biology.

  • Pembient has shaken up the world of Rhino conservation by challenging the status quo, sometimes education isn’t enough, if you have an approach which is failing, change it.
  • Clara Foods is helping us to reimagine food with beautiful and delicious Meringues, to start with, which have excited Chef’s globally as a new way to innovating in the kitchen humanely!
  • Extem are powering regenerative medicine with the first and most extensive global stem cell bank, supplying researchers globally with the cells they need to deliver on the promise of regenerative medicine, helping patients in dire need.
  • Arcturus Biocloud have launched the first consumer biotech cloud service, enabling applied biology and science from anywhere with a simple user interface with users signed up on the platform from over 100+ cities globally (and growing).

These are only a few of the companies who you’ll see presenting on our first Demo day, June 11th, in San Francisco, in which we invite you to attend, our general admissions are now sold out due to massive interest but this event is also for the broader global community and will be live streamed, so whether you’re in SF, Mumbai, London or further afield we invite you to join us! We’ll be sharing our livestream calendar invite on @indbio soon!

If you’re a scientist, entrepreneur or biohacker and have a re-imagined vision of the future, built with applied biology that you’re currently working on or would like to build, we’d also love to invite you to apply for our $250k funding package, we’ll be funding our next class of 15 new companies in SF in September and our first early applications deadline is June 30th 2015, get your application in ASAP, don’t wait for the deadline, as we’re currently interviewing teams for consideration into the next class!

The Story of Fire, Stone, and Biology

The Story of Fire, Stone and Biology
The Story of Fire, Stone and Biology

It was the Titan, Prometheus, who created man.

Prometheus glanced down on the Earth and noticed that rainwater was making nature live, without it trees and bushes died, giving way to desert.

Prometheus discovered the power of earth and water, so he mixed clay with water, moulding the shape of the first man.

It was in the shape of the gods that he created mankind.

For some, the well trodden mythology of the theft of fire from the gods by Prometheus, to share with humanity is seen as both a great sacrifice and a parable, that not even a titan is allowed to share the tools of the gods.

But fire and stone isn’t the only lesson which the Titan Prometheus can teach us, even in his punishment, chained to a rock, suffering in agony as his liver is eaten by an eagle, eternally, he gave us one more gift.

Regeneration.

It appears that even the ancient Greek’s knew of the liver’s ability to regenerate after injury, it’s an ancient learning hinted through mythology and yet, only recently have we really started to unravel the mechanisms of regeneration, not just in the liver but across the bodies of humans and other multicellular organisms.

“In Biology, Regeneration is the process of renewal, restoration, and growth that makes genomes, cells, organisms, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage”

So what do we, as humanity now know about regeneration?

  • We know that our DNA has built in repair mechanisms
  • We know that our cells have “shredders” which are constantly on the search for damaged proteins, destroying the old to ensure our cells continue to function.
  • We know that our tissues are constantly replenished by adult stem cells, as we get broken down by wear and tear, our bodies do an incredible job of repairing us, until they can’t.
  • We know that some organisms still retain their regenerative capabilities, long past the embryonic stage.
  • Flatworms can be cut in half and regenerate entirely, salamanders retain the ability to regenerate organs, eyes, tails and many more of their body parts and humans retain a limited amount of regeneration (although not the ability to regenerate damaged organs or limbs… yet).

So can we 3D print human organs yet?

No, not yet but we’re starting to understand some of the most complex technologies on this planet, DNA, proteins, cells and our living tissues, which turn chaos into order.

We have been able to strip hearts of cardiac cells, repopulate their scaffolding and restart them, they beat.

We’ve been able to keep lungs alive outside of the human body for a few hours (previously they’d foul within minutes), match and transplant hearts, lungs, kidneys and more successfully into living donors and this is just the beginning.

The technology of life

We’re beginning to understand the language of the gods, DNA is the code in which life is written and as we remember, in memorial, those who have lost their lives or have been severely wounded in battle for our freedoms, we can now offer them a glimmer of hope.

This year, the Department of Defense launched a new Organ preservation initiative supported by the Organ Preservation Alliance and New Organ. Companies like Organovo are now printing more and more complex tissues, we can, as of today, grow organoids (small organ like tissues) of most major human organs and researchers at universities across the globe are diving deeply into regenerative medicine and the development of a new area of science, organogenesis.

Prometheus, on that rock of eternal damnation, gave us one last gift, regeneration.

Ethan’s Journey: From Postdocalypse to Venture Funded Biotech Entrepreneur

Ethan's Journey: From Postdocalypse to Venture Funded Biotech Entrepreneur
Ethan's Journey: From Postdocalypse to Venture Funded Biotech Entrepreneur

Hi, my name is Ethan. I’m the Founder and CEO of Perlstein Lab. Perlstein Lab is a biotech startup and public benefit corporation based in San Francisco. Our mission is precision (personalized) orphan disease drug discovery. In this inaugural post, I will briefly recount the genesis of Perlstein Lab, the science behind our evolutionary approach, and why Perlstein Lab takes online outreach seriously.

18 months ago I faced the most important decision of my professional life: continue to try to break into academia, or leave for greener pastures. Like so many other members of Generation Postdocalypse, I could not ignore the prospects of endless competition for publications, grants and jobs . Was there a way to blend curiosity-driven research with tangible therapeutic outcomes? Of all things, Twitter became my global learning and support group, and I started to investigate options beyond the ivory tower. Very quickly I discovered communities of patient advocates, including inspiring parents of kids with orphan diseases, who convinced me that solving orphan disease puzzles would be the ideal path forward.

When I began putting together a formal business plan and slide deck last Fall, I was most confident about the science underlying our evolutionary drug screening platform, which is based on genome-edited primordial disease models: yeast, worms, flies and fish. When I was a grad student in Professor Stuart Schreiber’s lab at Harvard between 2002 and 2006 I validated yeast as a model for pharmacology. I then advanced these ideas as an independent fellow at Princeton from 2007 to 2012 by studying the pharmacology of antidepressants in yeast cells.

I knew I was onto something when I attended Rare Disease Day 2013 at NIH and learned that very few (if any) orphan disease researchers leverage primordial disease models, even though ancestral forms (aka homologs) of many orphan disease genes are evolutionarily conserved in simpler organisms. Instead, the vast majority of orphan disease research relies on mouse models of disease, and has relied on mouse models for the last 30+ years.

Most biotech startups don’t have a blog or Twitter presence. Perlstein Lab will be different from the typical biotech startup with respect to online outreach, especially patient engagement. What initially drew me into the orphan disease space was the openness, zeal and grace of patient advocates on Twitter and the blogosphere, so it’s only fair that Perlstein Lab returns the favor. As a for-profit company, we obviously have to be mindful of proprietary concerns. Wherever possible we will strive to engage patients, advocates, scientists or the public on our science, and share the week-to-week victories and tribulations of a 5-person biotech startup.

Ethan Perlstein is a Molecular Biologist, founder of Perlstein lab, a venture funded Orphan disease biotech startup and Mentor at Indie Bio. Feel free to reach out to Ethan