Applications for San Francisco (Batch 12) extended AGAIN through September 30th, 2021!

October 30, 2018
By Jun Axup
Convalesce: Curing Parkinson’s Disease with Stem Cell Therapy

Neurodegeneration is one of the most devastating diseases of aging, and today there is no cure. Stem cells are a very promising way of regenerating the faulty neurons, which would potentially create a cure. Convalesce is working on injecting stem cells into the brain using a special matrix that mimics the brain’s architecture, allowing the stem cells to survive, differentiate. and reconnect those neurons for Parkinson’s patients. We chatted with Subhadeep Das, co-founder and CEO of Convalesce.

How did you become interested in stem cell research?

Subhadeep: When I was a grad student I read a lot about the potential of stem cells in regenerative medicine and I was fascinated by the things stem cell therapies could unlock. Especially so for diseases that cannot be treated using traditional medicine, or are facing certain limitations within current treatment options. Stem cell-based treatment could overcome these drawbacks and limitations, which is how I got interested in the field. It was fascinating for me to work in an interdisciplinary area and not exclusively in hardcore biology or hardcore material science. I started working at the intersections of material science, especially with nanomaterials and stem cells, and when we came up with extracellular matrices which mimic the natural tissue it was a great thing for us from a science perspective. When we found that it could potentially solve some of the very key problems of stem cell therapy for neurodegenerative diseases like Parkinson’s, we eventually came up with a therapy for Parkinson’s disease using our discovery.

How did you decide to start the company and how does your team come together?

Subhadeep: I honestly didn’t have any plan of starting a company when I began my Ph.D. At that time I was just interested in doing cutting-edge science, but eventually, when I saw the potential of the technology that we developed, I was saddened to see that academia is happy with just publishing some papers. I wanted to push it further to bring the technology to the clinic where real people would get help out of the technology. During the final years of my Ph.D., I decided to take the leap to become an entrepreneur and try to commercialize this technology. Eventually, I started participating in startup boot camps, business competitions to at least have an idea of how a startups work and what are the non-science aspects that I should think of to start with.

After I got interested in entrepreneurship, I was talking to my friends and acquaintances regarding my ideas. My benchmate from IIT Bombay, Amrutraj, got interested and he had the type of cell biology background that was complementary to the skills that I have. We decided, okay, let’s give it a shot — let’s form a company and see if we can bring this thing together to solve the pending science problems and then bring the technology to the market.

How does your technology work? What was the key insight?

Subhadeep: The fundamental insight for us was to understand how stem cells would react to their microenvironment. Subsequently, we engineered that microenvironment specifically for neurons. It was such an amazing technical insight to learn during the process, now we believe that we have a platform where we can engineer multiple tissue matrices for multiple applications. The key for us was the realization of how crucial a matrix is for regenerative medicine for any organ. Most of the biology research has been focused on cells which, while crucial, as they are will actually do the job, if you consider any organ there are a lot of support systems that play a critical role. These were sort of neglected by biologists and we tried to bridge the gap between material science and biology by engineering specific niches for organs or stem cells. This was the insight for developing what we are currently doing.

What lessons did you learn transitioning from science to entrepreneur at IndieBio?

Subhadeep: We learned a lot of things during IndieBio, especially how to run a business. We always think about science and focus on the next scientific milestones, but after coming to IndieBio, we realized that there are a lot of things we need to have an understanding of if we are to bring this therapy to the market. When we started this was just a science project, not a business. Here we benefitted by getting insights on running a business and developing a business model, an idea of manufacturing, and the regulatory hurdles that are coming for us. I’d say these are critical to running a business.

How do you think your success as a company will change the therapeutics industry?

Subhadeep: The traditional therapeutic industry works by generating drugs from small molecules, but there is a whole emerging industry focusing on regenerative medicine which encompasses both stem cell therapy and gene therapy. Even in the cell therapy space most of the companies are still focused on cell type because that’s what comes to a biologist’s mind first: how to engineer the cells and get them to work more efficiently. We are radically changing that approach by engineering not only cells but also their microenvironment. If cells get a much better environment to survive and differentiate in, then they can finally do the job they are sent in to do. I think the holistic approach that we are creating will change the way therapies are done today, the microenvironment is critical for cell-based therapies to be successful.

What milestones are in the near future?

Subhadeep: We aspire to apply our first therapy, which is a stem cell therapy for Parkinson’s, in a human brain. We want to treat Parkinson’s patients as soon as possible. Our key milestone is to do our first human trials so that we know we have a cure for Parkinson’s.

Watch Convalesce pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream. Register here!