An Interview With Brendan Griffen of Scaled Biolabs

Scaled Biolabs

A Biomedical Lab the Size of Your Phone.

Scaled Biolabs

Photo: The Scaled Biolabs team – Brendan Griffen (left), Justin Cooper-White, and Drew Titmarsh.

Biological experiments are time-consuming, and space-consuming, while requiring repeated manual motions from lab technicians. But technology has allowed Scaled Biolabs to shrink down the entire system of experimentation down to the size of your phone. Using microfluidics, scientists can conduct thousands of individual tests in one fell swoop and accelerate the rate of discoveries. We talked to the company’s CTO, Brendan Griffen, a few questions about how this all came to be:

Tell me about your background, how did you become interested in biotech?

My academic background is in computational physics with an specialization in astrophysics, theoretical physics, and cosmology. I’ve spent the last ten years working on large projects trying to understand the origin of our universe, the evolution of stars, and galaxies.  From these experiences, I’ve seen first hand the power of a supercomputer in solving some of the most complex problems in the world. This is fundamentally because we’ve been able to control the flow of electrons through circuits at increasingly smaller scales. Biology is similar in many ways but instead of mixing and moving electrons from point A to point B, we’re moving fluids. This is the fundamental way biomedical research is currently done so it always perplexed me as to why we continue to use clunky equipment to interface the human scale with what we’re actually interested in (e.g. cells interacting). This is what excited me about the future of biotechnology, our ability to do biology at nature’s scale. The potential to miniaturize most of biological research means that in the next 50 years, we will likely transform our lives even more dramatically than what computers have done in the past 50 years.

I’ve always been interested in biotechnology but never had the opportunity to apply myself to developing these ideas. When I saw the technology my co-founders Drew Titmarsh and Justin Cooper-White had developed, I immediately understood that a microfluidic approach to experimental biology is exactly what’s needed to make the aforementioned future a reality. In order to be part of this exciting future, we formed our company Scaled Biolabs.

What problem are you working to solve with Scaled Biolabs?

We are accelerating discoveries in biology. We’ve taken the functionality of a modern biomedical R&D lab and shrunk it all down on a system the size of your phone. By shrinking things down we rely on less expensive materials, less highly trained manual labor, and most importantly we can execute numbers of experiments on an unprecedented scale. We can run nearly 10,000 experiments on a single system and additionally resolve every single cell in every one of those experiments. Why is this important? If a biologist can run down every single possible path in a maze of possibilities faster, then they can find the optimal solution which gets them to their desired outcome sooner rather than later.

Stem cells are one such maze and a very active area of research right now — how do we turn stem cells, the ‘blueprint cell’, into different parts of the human body? Our collaborators have already grown human kidney and beating heart tissue in our system because they found the optimal method for getting to those outcomes faster than traditional methods. At Scaled Biolabs, we enable these kinds of breakthroughs by allowing scientists to get more done, cheaper and sooner.

If you could only pick one thing to validate your reason for forming a startup, what would it be? In other words, what would be the single biggest indicator to you that you are doing the right thing?

All discussions of “what has value?” tend to link back to a basic notion of health and wellbeing. I personally believe that our team really does have the potential to deliver fundamental improvements to human health. Take just one example — in 2005, 65 million people died from kidney disease. Being able to regenerate a patient’s kidney from their own stem cells, which won’t be rejected by their immune system, will literally save lives. If we had to boil it down to a single reason for doing all of this then it’s that — accelerating the advent of regenerative medicine to meet the needs of millions of patients who can’t be helped by a pharmaceutical drug.

How do you think success can change your industry?

Apart from meeting patient’s needs, success to us is creating a new status quo in our industry. Biological research is in desperate need of an upgrade, and should our approach be successful, we would be enamored to see it more widely used. We don’t want to stop just there though. Unknown problems on the horizon will require solutions not yet invented, and so being successful will mean not just creating a new status quo, but also continually creating novel technological solutions.

How is your team uniquely able to tackle this? What’s the expertise?

We’ve got complementary talent trained around the world.

Our CEO, Drew Titmarsh, is a trained chemical and biological engineer and co-inventor of the microbioreactor technology which is the workhorse platform of Scaled Biolabs. He has coordinated multidisciplinary projects at the Australian Institute for Bioengineering and Nanotechnogy (Brisbane, Australia), and the Institute for Medical Biology, A*STAR (Singapore) in the areas of tissue engineering and regenerative medicine.

Our CSO Professor Justin Cooper-White is a global leader in tissue engineering and microfluidics, and co-inventor of our microbioreactor technology. With 20 years of expertise in running and funding large research programs, he currently holds the positions of Professor of Bioengineering in the Australian Institute of Bioengineering & Nanotechnology and the School of Chemical Engineering at the University of Queensland, Director of the Australian National Fabrication Facility-Queensland Node, and Office of the Chief Executive Science Leader within CSIRO, Australia’s federal research institution.

I’m the CTO and have ten years in computational physics employing a wide variety of hardware and software tools to create solutions to big data problems. My previous four years research as a postdoctoral fellow at MIT has provided me with a wide range of interdisciplinary skills which are well suited to our challenges ahead.

Any big lessons learned transitioning to startup entrepreneurship?

It’s been quite a dramatic transition. The following three areas are where we’ve found the biggest lessons:

  1. Being OK with moving more quickly than you’re comfortable with. Academia tends to have a perfection focused mindset because the operational timescales are much longer. In industry, things are measured in days. The closest analogy I’ve found is it’s like morphing from a mammal into an insect — your priorities certainly change!
  2. As the phrase goes, “it’s not what you know, it’s who who you know”. Academia tends to (in the ideal case) be more of a meritocracy where what you know really does give you the greatest return. In industry, having strong relationships with people you can lean on for help or to stage a warm introduction often converts into something of great value.
  3. Follow up. No one cares about your business more than you, so you really have to make that extra effort to follow up with people if an email or call thread goes cold. Even if there is not a quid pro quo to be had on the business side, it is always very useful to keep all learning opportunities available. There are large number of tools online now which allow you to maintain several hundred conversations at once and ensure that you don’t let potentially important relationships go cold.

What’s the biggest challenge you’ve encountered so far?

Our biggest challenge has been our messaging and identity (i.e. “what are we?”). This is often the case for platform technologies — you can address multiple problems but the key is to find the underlying compelling narrative which brings it all together. Thinking more fundamentally about our technology and which direction we are heading has really helped us solve this problem. Traction also does wonders to identity woes because you get validation that what you’re building is something people want, so it’s much easier to speak to that than just a lofty garage band idea.

What are the big goals and milestones you’re looking to hit in the short term? Long term?

At the moment we are focused on providing value to customers who seek the advantages of our technology. We are in the early stages of our long term goal of placing our system in every research lab around the world. These are primarily companies either creating high quality stem cells or turning stem cells into different tissues of the human body. In the very long term we want to place our instrument in all doctor’s offices so that unfortunate folks who are diagnosed with cancer can get personalized treatment plans tailored to their own immune system and cancer type. With this two pronged approach we aim to become industry leaders in both regenerative medicine and personalized medicine. We’ve got a long journey but we’re making good strides.

Learn more about Scaled Biolabs by watching them pitch on IndieBio Demo Day Feb. 9th! Register for the event or LiveStream here!