Stämm: Reinventing the Bioreactor

Biology is the best platform for manufacturing cells. It can grow and produce all kinds of biomaterials very effectively. But for humans to be able to tap into this potential, we have to build bioreactors and figure out how to scale them in order to produce the massive amounts of biomaterials we need. Bioreactors technology is very different when you’re optimizing for one reaction at one liter versus 100,000 liters, but this is where Stämm comes in. They are reinventing the way bioreactors work by developing a modular microfluidic platform that controls all the physical parameters, such as nutrients and dissolved oxygen, in a controlled environment. Unlike traditional bioreactor systems, their microfluidic bioreactor scales by adding more modules to increase the size of the reactor.

We sat down with CEO Juan “Yuyo” Llamazares to learn more. (Fun fact: his name is pronounced like “shoe-show.”)

How did you become interested in building reactors?

Yuyo: My first interaction with microorganisms was to study the interaction between plants and soil bacteria called growth-promoting bacteria. I was amazed by the communication between these microorganisms, this ability to sense the environment and that the bacteria will provide to the plants. I wanted to make use of this knowledge to create a product. I quickly realized that I would have to use bioreactors, and it became clear that the whole industry is based on bioreactors. That’s when I decided that I wanted to learn more about how we create these environments to make the cells divide, or to induce synthesis of protein. That was the first time that I got to see a bioreactor. I was used to working with plants, so working with a bioreactor felt really unintuitive, given what I knew of how cells proliferate in nature. I saw a really big opportunity there to develop new approaches.

How did you come to start this company and how did your co founders come together?

Yuyo: Well, my cofounder is my cousin, so we grew up together. But also, my grandfather taught me how to brew beer when I was 12 years old, and Federico and I saw an opportunity to manufacture yeast for brewers. That was our first time making a product, and it showed us how difficult it is to build biotech facilities. Even people that have a lot of biotech experience have trouble translating their knowledge to the market because it’s hard to develop these facilities. We saw the need for a reinvention of bioreactors so they can be reproduced around the world. We actively started scouting researchers knowledgeable in microfluidics and robotics, and started seeing that we could make this a reality. Bringing the team together, for us, was key. When we communicated our vision for the company, we found that researchers were excited to join us.

It can be difficult to take the leap to make that transition and to advocate for impact and transformation in the real world, coming from an environment that gives you all the tools you need to be comfortable. In Argentina, where I am from, there’s a reason researchers choose to stay in the lab. You have a predictable career and life, and that’s reassuring. But I made a trip to Chile and I learned about spin-off companies. That was not a concept I had been exposed to in Argentina, and I decided I wanted to bring the knowledge at my university to the world through my own company.

How does your technology work and what is the key insight that you had?

Yuyo: The key insight was to try to think about how cells experience the process of biomanufacturing and identifying room for improvement in that process. We found that today, we look at biomanufacturing as a population of cells, so we try to control the cells inside our vessel as a whole. The problem is that each cell at some point is going to be going through different metabolic stages and we take the average of that complexity. With existing bioreactors, we don’t have the tools to control that complexity, so we try to create a different kind of bioreactor: if we can account for each cell’s microenvironment then we open up a way to address the cell complexity. From that insight, we turned to microfluidics because it gave us the ability to look at the individual cell, however, the problem is that it’s hard to scale microchannels. That’s what we’re addressing with a lattice that cells move through in a predictable manner, which provides consistent nutrients and oxygen.

So how do you think your success as a company it will change the bio manufacturing industry?

Yuyo: I think that more people will know what biomanufacturing is. People will recognize it as a tool to solve a problem. Right now, biomanufacturing is “hidden” in big facilities, but with our technology, it can be used by more people at a smaller scale and more people will see the power of biology to manufacture or to solve problems.

What milestones are you aiming to hit in the near future?

Yuyo: We want to manufacture the bioprocessor and sell it to companies so they can optimize their processes as they create their product. We want to prove that this novel approach is robust and that there’s a future there. So far, we have worked with CHO and HEK cells for the manufacture of monoclonal antibodies, and we have seen that in our system, individual cells perform better. This means our process is more efficient and has higher productivity per cell. One of the other companies currently at IndieBio used our system to significantly increase the productivity of their process over the course of 20 days.

Watch STAMM pitch on IndieBio Demo Day, Tuesday Nov. 6th in San Francisco or via LiveStream. Register here!

Start typing and press Enter to search