Kraken Sense: Pathogens Have Nowhere Else to Hide

A considerable amount of effort is taken to make sure that the water that is used to process and rinse your produce is clean and clear of pathogens like salmonella and legionella. Even with all the regulations that are imposed on our food supply chain to prevent such outbreaks, we are still not impervious to these bacterial threats. The affects not only public health, but also environmental, as millions of pounds of food are thrown away because of the scare. The primary reason is that the current methods for testing are too slow and too cumbersome to alert us fast enough. We sit down with Nisha Sarveswaran to talk about her innovative platform to disrupt the water testing market.

Water quality has always been a passion of mine. I was born in Sri Lanka and I knew many people who didn’t have access to clean water, so I have always been conscious of the importance of safe water access. Our continuous progress is only ensured if we can properly manage our basic resources, and having safe water is critical to everyone.

I learned about the importance of water testing while doing research on pathogen-related illnesses and food recalls. It became clear to me that the present testing methods, developed more than fifty years ago, cannot meet the water and food supply challenges of 21st century.

The current best practice is to take a sample of water, culture it in the lab for three days and have a trained technician examine the results to determine the presence and the extend of the contamination in the original sample. With our just-in-time logistics network, the produce collected and tested today may already be in the grocery store three days from now, so the current testing methodology takes too long and too limiting in scope.

With our real-time detection methodology, we can identify the contamination issue at the source and prevent the costly recalls that we are always hearing about on the news.

Ours uses a system based on antibodies on a carbon nanotube, which are tiny materials with very interesting properties. With our specific treatment and manufacturing methods we are able to create thin, narrow, electrically conductive strips with embedded antibodies specific to certain bacteria and even strains. When exposed to water samples that contain the target bacteria, the electrical signal changes in a very unique way, and that allows us to detect the presence and concentration of the bacteria that we want to detect.

Because we are measuring the signals immediately as water is passed through, we can essentially detect pathogens in real time. The only limit is how fast we can concentrate the water, and how fast the antibodies bind to the pathogens to get a noticeable change in our signal. This real time signal means that you can catch pathogens before the food even leaves the door of your facility. Compare that to having to get a water sample, and literally shipping it to a testing facility.

Yes! People need to understand that it’s not just about how many people get food poisoning. Just think about how much perfectly good produce out there gets thrown out because of a bad apple in the market (pun intended).

For example, once a bad batch of romaine lettuce leaves a facility, it’s hard to track where all of it goes after, and once a few people get sick from it, the entire industry panics and avoids romaine lettuce, which kills the prices and puts the entire romaine market in shock (for good reason). This scare translates to hundreds of millions of dollars of food wasted, which is not only an environmental waste, but also a waste considering how many people are currently food insecure.

Food consumption is growing rapidly with our rising population and increasing prosperity. Our resources and supply chain will become more strain and will require modern solutions to identify the potential contaminations in real-time. The sensors that are able to detect harmful bacteria, in as little time as possible, are becoming more and more important to ensure food safety.

Moreover, by detecting contamination early, we are not only able to prevent costly recalls and associated health implications, but can also significantly reduce the food waste by providing alternative utilization for food that is no longer fit for human consumption. Currently the food waste from the supply chain accounts for 6% of the total greenhouse gas emissions. Our solution will ensure that the food that is distributed is safe and thus will also reduce the food waste that happens in the supply chain due to recalls.

We are building a multi-pathogen lab-on-a-chip system that can detect multiple pathogens simultaneously in real time. The remarkable advantage of our approach, other than the real-time capability, is that if there are antibodies available for a certain pathogen, we can build a sensor that can detect it and add it to our list of capabilities.

This work however goes beyond simply creating new sensors. In order to ensure that the results can get to the right hands in as little time as possible we have also developed automated water sampling systems and AI based machine learning algorithms running on our cloud platform that can interpret the sensor data and send the results in seconds.

We can develop a new sensor in under 2 months, for example having developed the E. coli sensor we have spent some of the time at IndieBio developing Legionella sensor. This process will only accelerate as our first sensors enter the market and the process of creating new sensors becomes more established.

We are working on developing protocols to help increase food safety testing and establish our methodology as the new standard for water testing. We really think that the water testing market won’t be the same after a few facilities can test in real time.

It’s like Amazon’s 2-day shipping: Once people start to get used to the speed, they just can’t imagine going to a much slower system… likewise, we think once we have a few pilots and customers, the rest of the market will start to find their conventional way of testing really outdated, and will want to come to us. In the near future, we see our solutions being present across the supply chain from early detection on the farms, to critical supply chain points that are highly susceptible to contamination.

We are raising the seed round to further develop the lab on the chip system, expand our detectable bacteria capabilities, and pilot our solution with several key customers that will demonstrate the concept to the industry in general. At the same time, we are developing a suite of tools that will be used in tying it all together with blockchain technology so that every supplier has constant traceability in their food supply chain in real time.

Start typing and press Enter to search